Behaviour of major, minor and trace elements (including REEs) during kaolinization processes at Zonouz deposit, northeast of Marand, East Azarbaidjan province

Document Type : Research Article

Authors

Urmia

Abstract

The Zonouz kaolin deposit is located ~15 km northeast of Marand, East-Azarbaidjan province. Based on physical features in field investigations, such as color, five distinct kaolin types including (1) white, (2) lemon, (3) gray, (4) brown, and (5) yellow are distinguished in the deposit. Field evidence and petrographic studies indicate that the deposit is genetically close to trachy-andesite rocks. According to mineralogical data, the deposit contains quartz, kaolinite, montmorillonite, calcite, pyrophyllite, chlorite, muscovite-illite, dolomite, hematite, and anatase minerals. Geochemical data indicate that function of alteration processes on trachy-andesite rocks during development of Zonouz ore deposit was accompanied by leaching of elements such as Al, Na, K, Rb, Ba, V, Hf, Cu, Zr, Tm, Yb, and Lu, enrichment of elements such as U, Nb, and Ta, and leaching-fixation of elements such as Si, Fe, Ca, Mg, Ti, Mn, P, Cs, Sr, Th, Co, Cr, Ni, Y, Ga, LREE, Tb, Dy, Ho, and Er. Incorporation of obtained results from mineralogical and geochemical studies show that physico-chemical conditions of alteration environment, the relative stability of primary minerals, surface adsorption, preferential sorption by metallic oxides, existing of organic matters, scavenging and concentration processes, and fixation in neomorphic mineralogical phases played important role in distribution of elements in the deposit. Geochemical studies show that development of the deposit is relative to two types of processes, (1) hypogene and (2) supergene. The distribution pattern of REEs indicates that differentiation degree of LREEs from HREEs in supergene kaolins is more than hypogene kaolins. Geochemical studies indicate that minerals such as Mn-oxides, zircon, anatase, hematite, cerianite, and secondary phosphates (monazite, rhabdophane, churchite, and zenotime) are the potential hosts for rare earth elements in this deposit.

Keywords


[1]حسنی پاک ع. ا.، "گزارش پروژه شناخت کانی شناسی و شیمیایی کائولن زنوز"، (1363) ص 1-80.
[2] Eftekhar-nezhad J., Ghorashi M., Mehrparto M., "Poldasht 1:250,000 geological quadrangle map", (1989).
[3] Eftekhar-nezhad J., "Julfa 1:100,000 geological quadrangle map", (1996).
[4] فریدآزاد م.، "مطالعه پترولوژیکی و زمین شیمیایی سنگهای آذرین منطقه زنوز با نگرشی بر کائولن زایی آنها"، پایان نامه کارشناسی ارشد دانشگاه تبریز، (1378) 138 ص.
[53] کرمی قوچم ب.، "کانی شناسی و زمین شیمی کانیهای رسی کانسار کائولن زنوزمرند"، پایان نامه کارشناسی ارشد دانشگاه شیراز، (1379) 214 ص.
[6] ابراهیمی خ.، "کائولن زنوز- نگرشى بر خصوصیات فیزیکى، شیمیایى وکاربردهاى صنعتى"، چهارمین همایش انجمن زمین شناسى ایران، دانشگاه تبریز، (1379).
[7] امین سبحانی ا.، صفری م.، "بررسى زمین شناسی و ژئوشیمیایى کائولن زنوز"، بیست و پنجمین گردهمایى علوم زمین، سازمان زمین شناسى و اکتشافات معدنی کشور، (1380).
[8] اعتمادی ب.، کرمی ب.، جعفری ی.، "بررسی کانی شناسی و زمین شیمیایی کانیهای رسی کانسار زنوز مرند با تأکید بر مطالعات SEM و مقایسه آن با کانسار استقلال آباده"، مجله بلورشناسی و کانی شناسی ایران، سال دهم ، شماره 1 (1381) ص 35-50.
[9] سیاه چشم ک.، عابدینی ع.، "بررسی کانی شناسی، ژئوشیمی و سنگ مادر کانسار کائولن زنوز مرند"، بیست و دومین گردهمایى علوم زمین، سازمان زمین شناسى و اکتشافات معدنی کشور، (1381).
[10] سیاه چشم ک.، عابدینی ع.، احمدزاده غ.، "بررسى تکوین کانسار کائولن زنوز در ارتباط باپدیده‎هاى دگرسانى هیپوژن و سوپرژن"، بیست و یکمین گردهمایى علوم زمین، سازمان زمین شناسى و اکتشافات معدنی کشور، (1382).
[11] عامل ن.، مؤید م.، حاج علیلو ب.، "مطالعه پتروگرافی و پترولوژی سنگهای آتشفشانی منطقه زنوز و قره تپه – شمال غرب تبریز"، دومین همایش تخصصی زمین شناسی دانشگاه پیام نور تبریز، (1387).
[12] علیپور و.، "بررسی فاکتورهای کنترل کننده توزیع عناصر جزئی و نادر خاکی در طی فرآیندهای کائولینیتی شدن در زنوز (مرند- استان آذربایجان شرقی)"، پایان نامه کارشناسی ارشد زمین شناسی اقتصادی دانشگاه ارومیه، (1389) 113 ص.
[13] علیپور و.، عابدینی ع.، علیپور ص.، "زمین شیمی عناصر جزئی و نادر خاکی در کانسار کائولن زنوز، شمال شرق مرند، استان آذربایجان شرقی"، نخستین همایش زمین شناسی اقتصادی ایران، دانشگاه فردوسی مشهد، (1389).
[14] علیپور و.، علیپور ص.، عابدینی ع.، "نقش فرآیندهای هیپوژن و سوپرژن در تکامل زمین شیمیایی کانسار کائولن زنوز، شمال شرق مرند، استان آذربایجان شرقی"، چهاردهمین همایش انجمن زمین شناسی ایران و بیست و هشتمین همایش سازمان زمین شناسی و اکتشافات معدنی کشور، (1389).
[15] Maiza P. J., Pieroni D., Marfil S. A., "Geochemistry of hydrothermal kaolins in the SE area of Los Menucos, Province of Rlo Negro, Argentina", In: Dominguez, E.A., Mas, G.R., Cravero, F. (Eds.), 2001, A Clay Odyssey Elsevier, Amsterdam (2003) 123-130.
[16] Dill H. G., Bosse H. R., Henning K., Fricke A., Ahrendt H., "Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt the Central Andes of
northwestern Peru", Mineralium Deposita 32 (1997) 149-163.
[17] Dill H. G., Bosse H. R., Kassbohm J., "Mineralogical and chemical studies of volcanic-related argillaceous industrial minerals of the Central America Cordillera (Werstern Salvador)", Economic Geology 95 (2000) 517-538.
[18] Koester H., "Ein Beitrag zur Geochemie und Enstehung der oberpfalzischen Kaolin-Feldspat-LagerstaÈtten", Geol Runds 63 (1974) 655- 689.
[19] Wagman D. D., Evans W. H., Parker V. B., Schumm R. H., Halow I., Bailey S. M., Churney K. L., Butall R. L., "The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units", J Phys Chem Ref Data 11 (1982) 2-392.
[20] Stoffregen R. E., Alpers C. N.,Woodhouseite and svanbergite in hydrothermal ore deposits: products of apatite destruction during advanced argillic alteration", Canadian Mineralogist 25 (1987) 201-211.
[21] Storr M., Koster H. M., Kromer H., Hilz M., "Minerale der Crandallit-Reihe im Kaolin von Hirschau-Schnaittenbach, Oberpfalz", Z Geol Wiss 19 (1991) 677- 683.
[22] Rollinson H., "Using geochemical data: evaluation, presentation, interpretation", (1993) 352p.
[23] Malpas J., Duzgoren-Aydin N. S., Aydin A., "Behaviour of chemical elements during weathering of pyroclastic rocks, Hong Kong", Environment International 26(2001) 359-368.
[24] Van Der Weijden C. H., Van Der Weijden R. D., "Mobility of major and some redox – sensitive trace element and rare earth elements during weathering of four granitoids in central Protugal", Chemical Geology 125 (1995) 149-167.
[25] Arslan M., Kadir S., Abdioglu E., Kolayli H., "Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey", Clay Minerals 41(2006) 597-617.
[26] Munch P., Duplay J., Cocheme J. J., "Alteration of silicic vitric tuffs interbedded in volcanoclastic deposits of the Southern Basin and Range Province, Mexico", Evidences for Hydrothermal Reactions 44 (1996) 49-67.
[27] Mutakyahwa M. K. D., Ikingura J. R., Mruma A. H., "Geology and geochemistry of bauxite deposits in Lushoto district, Usambara mountains, Tanzanian", Journal of African Earth Sciences 36 (2003) 357-369.
[28] Zielinski R. A., "The mobility of Uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome Formation, Colorado, U.S.A", Chemical Geology 35 (2003) 185-20.
[29] Christidis G. E., "Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece", Clays and Clay Minerals 46 (1998) 379-399.
[30] Koppi A. J., Edis R., Foeld D. J., Geering H. R., Klessa D. A., Cockayne D. J. H., "REEs trends and Ce-U-Mn associations in weathered rock from Koongarra, northern territory, Australia", Geochimica et Cosmochimica Acta 60 (1996) 1695-1707.
[31] Gouveia M. A., Prudencio M. I., Figueiredo M. O., Pereira L. C. J., Waerenbrogh J. C., Morgado I., Pena T., Lopes A., "Behaviour of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal", Chemical Geology 107 (1993) 293-298.
[32] Plank T., Langmuir C. H., "The chemical composition of subducting sediment and its consequences for the crust and mantle", Chemical Geology 145 (1988) 325-394.
[33] Kataba -Pendias A., Pendias H., "Trace elements in soils and plants, Boca Raton, Florida: CRC Press", (1992).
[34] Taboada T., Cortizas A. M., Garcia C., Garcia-Rodeja E., "U and Th in weathering and pedogenetic profiles developed on granitic rocks from NW Spain", Science of the Total Environmental 356 (2006) 192-206.
[35] Cowart J. B., Burnett W. C., "The distribution of U and Th decay-series radionuclides in the environment- a review", Journal of Environmental Quality 23 (1994) 651-662.
[36] Coppin F., Berger G., Bauer A., Castet S. Loubet M., "Sorption of lanthanides on smectite and kaolinite", Chemical Geology 182 (2002) 57-68.
[37] Henderson P., "Rare earth element geochemistry. Elsevier, Amsterdam", (1984).
[38] Wehrli B., Stumm W., "Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation", Geochimica et Cosmochimica Acta 53 (1989) 69-77.
[39] Aiuppa A., Allard P., Alessandro W., Michel A., Parello F., Treuil M., Valeza M., "Mobility and fluxes of major elements, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)", Geochimica et Cosmochimica Acta 64 (2000) 1827-1841
[40] Singh B., Gilkes R.J., "Properties and distribution of iron oxides and their associations with minor elements in the soil of southwestern Australia", Journal of Soil Sciences 43 (1992) 77-98.
[41] Schwertmann U., Pfab G., "Structural V and Cr in lateritic iron oxides: Genetic implications", Geochimica et Cosmochimica Acta 60 (1996) 4279-4283.
[42] Laskou M., Economou-Eliopoulos M., "The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece", Journal of Geochemical Exploration 93 (2007) 67-77.
[43] Dupre B., Veirs J., Dandurand J. L., Polve M., Benezeth P., Vervier P., Braun J. J., "Major and trace elements associated with colloids in organic-rich river waters: ultrafiltration of natural and spiked solution", Chemical Geology 160 (1999) 63-80
[44] Marques J. J., Schulze D. G., Curi N., Mertzman S. A., "Trace element geochemistry in Brazilian Cerrado soils", Geoderma 121 (2004) 31-43.
[45] Fung P. C., Shaw D. M., "Na, Rb, and Tl distributions between phlogopite and sanidine by direct synthesis in a common vapou phase",Geochimica et Cosmochimica Acta 56 (1978) 899-909.
[46] Sayin S. A., "Origin of Kaolin Deposits: Evidence From the Hisarcik(Emet-Kutahya) Deposits, Western Turkey", Turkish Journal of Earth Science 16 (2007) 77-96.
[47] Ma J., Wei G., Xu Y., Long W., Sun W., "Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China", Geochimica et Cosmochimica Acta 71 (2007) 3223-3237.
[48] Nesbitt H. W., Wilson R. E., "Recent chemicalweathering of basalts", American Journal of Science 292 (1992) 740-777.
[49] Panahi A., Young G. M., Rainbird R. H., "Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada", Geochimica et Cosmochimica Acta 64 (2000) 2199-2220.
[50] Pokrovsky O. S., Schott J., Dupre B., "Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia", Geochimica et Cosmochimica Acta 70 (2006) 3239-3260.
[51] Milnes A. R., Fitzpatrick R. W., "Titanium and zirconium minerals. In: Dixon, J.B., Weed, S.W. (Eds.), Minerals in the Soil Environment", Soil Science Society of America (1989) 1131-1205.
[52] Muggler C. C., "Polygenetic oxisols on Tertiary surfaces, Minas Gerais Brazil. Ph.D thesis. Wageningen University, Netherlands", (1998).
[53] Lopez J. M. G., Bauluz B., Nieto C. F., Oliete A. Y., "Factors controlling the trace-elements distribution in fine-grained rocks: The the Albian kaolinite-rich deposits of the Oliete Basin (NE Spain)", Chemical Geology 214 (2005) 1-19.
[54] Fernandez-Caliani J. C., Cantano M., "Intensive kaolinization during a lateritic weathering event in southwest Spain: Mineralogical and geochemical inferences from a relict paleosol", Catena 80 (2010) 23-33.
[55] Salvi S., Williams-Jones A. E., "The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada", Geochimica et Cosmochimica Acta 60 (1996) 1917-1932.
[56] Moore C.L., "Evaluation of regolith development and element mobility during weathering using isocon technique", Geological Society of Australian. Spec. Publ", 20 (1998) 141–147.
[57] Jiang S. Y., Wang R. C., Xu X. S., Zhao K. D., "Mobility of high field strength elements (HFSE) in magmatic-, and submarine-hydrothermal systems", Phys. Chem. Earth 30 (2005) 1020-1029.
[58] Patino L. C., Velbel M. A., Price J. R., Wade J. A., "Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala", Chemical Geology 202 (2003) 343-364.
[59] De Putter T., Andre L., Bernard A., Dupuis C., Jedwab J., Nicaise D., Perruchot A., "Trace element (Th, U, Pb, REE) behaviour in a cryptokarstic halloysite and kaolinite deposit from
Southern Belgium: Importance of accessory mineral formation for radioactive pollutant trapping", Applied Geochemistry 17 (2002) 1313-1328.
[60] Ohta A., Kawabe I., "REE (III) adsorption onto Mn dioxide (α-MnO2) and Fe oxihyroxide: Ce(III) oxidation by α-MnO2", Geochimica et Cosmochimica Acta 65 (2001) 695-703.
[61] Oh N. H., Richter D. D., "Elemental translocation and loss from three highly weathered soil- bedrock profiles in the southeastern United States", Geoderma 126 (2005) 5-25.
[62] Belousova E. A., Griffin W. L., Pearson N. J., "Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons", Mineralogical Magazine 62 (1998) 355-366.
[63] Ndjigui P., Bilong P., Bitom D., Dia A., "Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinites in the Lomie ultramafic complex, southeast Cameroon", Journal of African Earth Sciences 50 (2008) 305-328.
[64] Karakaya N., "REE and HFS element behaviour in the alteration facies of the Erenler Dagi Volcanics (Konya, Turkey) and kaolinite occurrence", Journal of Geochemical Exploration 101 (2009) 185-208
[65] Roy P. D., Smykatz-Kloss W., "REE geochemistry of the recent playa sediments from the Thar Desert, India: An implication to playasediment provenance", Chemie der Erde Geochemistry 67 (2007) 55-68.
[66] Wang Q., Deng J., Liu X., Zhang Q., Sun S., Jiang C., Zhou F., "Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China", Journal of Asian Earth Sciences (inpress).
[67] Taylor S. R., McLennan S. M., "The continental crust: Its composition and evolution", Blackwell, (1985) 312p.Oxford
[68] Ronov A. B., Balashov Y. A., Migdisov A. A., "Geochemistry of the rare earths in the sedimentary cycle", Geochemistry International 4 (1967) 1-17.
[69] Ece O. I., Nakagawa Z. E.,"Alteration of volcanic rocks and genesis of kaolin deposits in the Sile Region, northern Ystanbul, Turkey. Part II: differential mobility of elements",Clay Minerals 38 (2003) 529-550.
[70] Klinkhammer G., German C. R., Elderfield H., Greaves M. J., Mitra A., "Rare earth elements in hydrothermal fluids and plume particulates by inductively coupled plasma mass spectrometry", Marine Chemistry 45 (1994) 179-186.
[71] Galan E., Fernandez-Caliani J. C., Miras J. C., Aparicio P., Marquez M. G.,"Residence and fractionation of rare earth elements during kaolinization of alkaline peraluminous granites in NW Spain", Clay Minerals 42 (2007) 341 - 352.
CAPTCHA Image