Zircon U-Pb dating of Maherabad porphyry copper-gold prospect area: evidence for a late Eocene porphyry-related metallogenic epoch in east of Iran

Document Type : Research Article

Authors

Ferdowsi University of Mashhad

Abstract

Eastern Iran has great potential for porphyry copper deposits, as a result of its past subduction zone tectonic setting that lead to extensive alkaline to calc-alkaline magmatic activity in Tertiary time. Maherabad is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. This is related to a succession o f monzonitic to dioritic porphyries stocks that were emplaced within volcanic rocks. Monzonitic porphyries have basic role in mineralization. Hydrothermal alteration zones are well developed including potassic, sericitic-potassic, quartz-sericite-carbonate-pyrite, quartz-carbonate-pyrite, silicified-propylitic, propylitic, carbonate and silicified zones. Mineralization occurs as Disseminated, stockwork and hydrothermal breccia. Based on early stage of exploration, Cu is between 179- 6830 ppm (ave. 3200 ppm) and Au is up to 1000 ppb (ave. 570 ppb). This prospect is gold- rich porphyry copper deposit. Laser-ablation U-Pb dating of two samples from ore-related intrusive rocks indicate that these two monzonitic porphyries crystallized at 39.0 ± 0.8 Ma to 38.2 ± 0.8 Ma, within a short time span of less than ca. 1 Ma during the middle Eocene. This provides the first precise ages for metallogenic episode of porphyry-type mineralization. Also, the initial 87Sr/86Sr and (143Nd/144Nd)i was recalculated to an age of 39 Ma. Initial 87Sr/86Sr ratios for monzonitic rocks are 0.7047-0.7048. The (143Nd/144Nd)i isotope composition are 0.512694-0.512713. Initial ε Nd isotope values 1.45-1.81. Based on isotopic data the magma had originated beyond the continental crust. The study will be used for tectonic-magmatic setting and evolution of eastern Iran.

Keywords


[1] Heaman L. M., Bowins R., Crocket, J. “The chemical composition of igneous zircon suites: implications for geochemical tracer studies”. Geochimica et Cosmochimica Acta, 54: 1597-1607 (1990).
[2] Wark D.A., Miller C.F. “Accessory mineral behavior during differentiation of a granite suite: monazite, xenotime and zircon in the Sweetwater Wash pluton, southeastern California, U.S.A”. Chemical Geology, 110: 49-67 (1993).
[3] Bea F. “Controls on the trace element composition of crustal melts. Transactions of the Royal Society Edinburgh”. Earth Science, 87: 33-41 (1996).
[4] Hoskin P.W.O., Schaltegger U. “The composition of zircon and igneous and metamorphic petrogenesis”. In: Hanchar, J.M. and Hoskin, P.W.O. (eds) Zircon. Reviews in Mineralogy and Geochemistry, 53: 27-62 (2003). DOI: 10.2113/0530027.
[5] Watson E.B. “Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geologic models and implications for isotopic inheritance”. Trans. R. Soc. Edinb. Earth Science, 87: 43-56 (1996).
[6] Hanchar J.M., Hoskin P.W.O. “Zircon”. Reveiws in Mineralogy and Geochemistry, 53, Mineralogical Society of America, Washington, DC: 500 p (2003).
[7] Mezger K., Krogstad E.J. “Interpretation of discordant U-Pb zircon ages: an evaluation”. Journal of Metamorphic Geology, 15: 127-140 (1997).
[8] Solar G.S., Pressley R.A., Brown M., Tucker R.D. “Granite ascent in convergent orogenic belts: testing a modle”. Geology, 26: 711-714 (1998).
[9] Parrish R.R., Noble S.R. “Zircon U-Th-Pb geochronology by isotope dilution- thermal ionization mass spectrometry (ID-TIMS)”. In Zircon (J.M. Hanchar and P.W.O. Hoskin, eds.). Reveiws in Mineralogy and Geochemistry, 53: 183-213 (2003). DOI: 10.2113/0530183.
[10] Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. “The application of laser ablation-inductively coupled plasma- mass spectrometry to in suit U-Pb zircon geochronology”. Chemical Geology, 211: 47-69 (2004).
[11] Maksaev V., Munizaga F., Fanning M., Palacios C., Tapia J. “SHRIMP U-Pb dating of the Antucoya porphyry copper deposit: new evidence for an early Cretaceous porphyry-related metallogenic epoch in the Coastal Cordillera of northern Chile”. Mineralium Deposita, 41: 637-644 (2006). DOI:10.1007/s00126-006-0091-5.
[12] Zhao Z.H., Xiong X.L., Wang Q., Wyman D.A., Bao Z.W., Bai Z.H., Qiao Y.L. “Underplating-related adakites in Xinjiang Tianshan, China”. Lithos, 102: 374-391 (2008). DOI:10.1016/j.lithos.2007.06.008.
[13] ضیایی م؛ عابدی آ؛ "کانی سازی مس پورفیری در کمربند متالوژنی حاشیه کویر لوت". یازدهمین کنفرانس بلورشناسی و کانی شناسی ایران، دانشگاه یزد، (1382) ص 57-59.
[14] خسروی م؛ "مطالعات پترولوژیکی، آلتراسیون، کانی سازی هاله ژئوشیمیایی در منطقه رحیمی (شمال غرب فردوس)". پایان نامه کارشناسی ارشد زمین شناسی اقتصادی، دانشگاه فردوسی مشهد، (1385) 265 صفحه.
[15] کریم پور م ،ح؛ "زونهای آلتراسیون کوارتز حفره دار و کوارتز- آلونیت (سولفید زیاد) بخش فوقانی سیستم مس پورفیری منطقه چاه شلغمی، جنوب بیرجند". سیزدهمین همایش انجمن بلورشناسی و کانی شناسی ایران، دانشگاه شهید باهنر کرمان، (1384) صص 7-11.
[16] Tera F., Wasserburg G.J., “U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks”. Earth and Planetary Science Letters, (1972)14: 281-304.
[17] Ludwing K.R., “User,s manual for Isoplot/Ex, version 3.0, a geochronological toolkit for Microsoft Excel”. Berkeley Geochronology Center, CA, spatial publication no.4 (2003)
[18] Tarkian M., Lotfi M., Baumann, A. “Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran”. Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran, 51: 357-383 (1983).
[19] Stocklin J., Nabavi M.H. “Tectonic map of Iran”. Geol. Surv. Iran (1973).
[20] Berberian M. King G.C.P. “Towards a paleogeography and tectonic evolution of Iran”. Canadian Journal of Earth Science, 18: 210-265 (1981).
[21] Camp V., Griffis R. “Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran”. Lithous, 15: 221-239 (1982).
[22] Jung D., Keller J., Khorasani R., Marcks Chr., Baumann A., Horn P. “Petrology of the Tertiary magmatic activity the northern Lut area, East of Iran”. Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran, 51: 285-336 (1982).
[23] Tirrul R., Bell I.R., Griffis R.J., Camp V.E. “The Sistan suture zone of eastern iran”, Geolc. Soc. Am. Bull, 94: 134-156 (1983). DOI: 10.1130/0016-7606(1983)942.0.CO;2.
[24] وثیق ح؛ سهیلی م؛ "نقشه زمین شناسی 1:100000 سرچاه شور (برگه 7754)". سازمان زمین شناسی و اکتشافات معدنی کشور (1354).
[25] ملکزاده شفارودی آ؛ "زمین شناسی، کانی سازی، آلتراسیون، ژئوشیمی، میکروترمومتری، مطالعات ایزوتوپی و تعیین منشأ کانی سازی مناطق اکتشافی ماهرآباد و خوپیک، استان خراسان جنوبی". رساله دکتری (Ph.D) زمین شناسی اقتصادی دانشگاه فردوسی مشهد، 600 صفحه (1388).
[26] Malekzadeh Shafaroudi A., Karimpour M.H., Mazaheri S.A., “Rb–Sr and Sm–Nd isotopic compositions and Petrogenesis of ore-related intrusive rocks of gold-rich porphyry copper Maherabad prospect area (north of Hanich), east of Iran”. Journal of Crystallography and Mineralogy, 18: 15-32 (2010).
[27] Williams I.S. “Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia”. Australian Journal of Earth Sciences, 48: 557-580 (2001). DOI: 10.1046/j.1440-0952.2001.00883.x
[28] Rubatto D., Williams I.S., Buick I.S. “Zircon and monazite response to prograde metamorphism in the Reynolds Range Central Australia”. Contributions to Mineralogy and Petrology, 140: 458-468 (2001).
[29] Rubatto D. “Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism”. Chemical Geology, 184: 123-138 (2002). PII: S0009-2541(01)00355-2.
[30] Cherniak D.J., Watson E.B. “Pb diffusion in zircon”. Chemical Geology, 172: 5-24 (2000). DOI:10.1016/S0009-2541(00)00233-3.
CAPTCHA Image