Mineralization study on Dehbid magnetite deposit, Fars; using mineralogical and geochemical data

Document Type : Research Article

Authors

Shiraz

Abstract

The Dehbid magnetite deposit is located in northeastern part of Fars province, in the southern border of Sanandaj-Sirjan metamorphic zone. The mineralization occurred as veins and lenses along NW-SE faults. The ores are mainly hosted in silicified dolomite of early Mesozoic (Triassic). Mineralogical studies show that the ores are dominated by magnetite and minor hematite with massive texture occurring as cement of angular remnants of silicified host dolomite. According to geochemical data, Fe2O3 content in the mineralized zones show extensive variation between 34 to 75 wt %. The P, Ti, Cr and V contents of the iron ores are remarkably low and Co/Ni, Cr/V and LREE/HREE ratios, positive Eu anomalies, negative Ce anomalies, Eu/Sm = 1, along with field and textural observations of Dehbid ores indicate that the deposit belongs to the class of hydrothermal iron ores. At Dehbid, the magnetite ores are formed as open space fillings. The sparse rhyolites and basalts in the area may be regarded as the origin of iron and heat in the hydrothermal system. A decrease in temperature and likely pressure due to fluid mixing are the major causes of iron oxide deposition.

Keywords


[1] Stanton R. L., "Ore Petrology", McGraw–Hill international series in the earth and planetary sciences, New York xv (1972) 713 p.
[2]Guilbert J. M., Park C. F., "The Geology of Ore Deposits",W.H.Freeman& Co (1997) 984 p.
[3] Barton M. D., Johnson D. A., "Aiternative brine sources for Fe oxide (-Cu-Au) systems: Implications for hydrothermal alteration and metals, in porter, T.M., ed., hydrothermal iron oxide copper-gold and related deposits, A global perspective" Adelaide, Australian Mineral Foundation 2 (2000) 43-60.
[4] Alavi M., "Structures of the Zagros fold–thrust belt in Iran", American Journal of science 307 (2007) 1064-1095.
[5] Sarkarinejad K .H., Azizi A., "Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran", Journal of Structural Geology 30 (2008) 116-136.
[6] Sarkarinejad K .H., Heyhat M., Faghih A., Kusky T., "Heterogeneous ductile deformation and quartz c-axis fabric development within the HP-LT Sanandaj-Sirjan Metamorphic Belt, Iran", Tectonophysics 485 (2010) 283–289.
[7] Taraz H., "Geology of the Surmaq-Dehbid area Abadeh regieon, central Iran" Geol. Sur. Iran (1974) Report No 37.
[8] Ramdohr P., "The ore minerals and their intergrowth", (1980) Elsevier.
[9] Craig J. R., Vaughan D. I., "Ore microscopy and ore petrography", John Wiley and Sons, Inc (1981) 406p.
[10] ترابیان س.،"کانه زایی و ژنز آنومالی معدن سه گل گهر سیرجان با تکیه بر توزیع عناصر جزئی"، پایان نامه کارشناسی ارشد دانشگاه تربیت معلم، 1386.
[11] Marschik R., Spikings R., Kuscu I., "Geochronology and stable isotope signature of alteration related to hydrothermal magnetite ores in Central Anatolia, Turkey", Miner Deposita 43 (2008) 111–124.
[12] Ness W.D., "Introuduction to mineralogy", Oxford university press Inc (2000).
[13] Hoffman D., "Geochemistry and Genesis of manganiferous silicate rich iron formation bands in the Broken Hill deposits, Aggeneys, South Africa", Exploration and Mining Geology 3 (1994) 407-417.
[14] Peter J.M., "Ancient iron formation: their genesis and use in the exploration for stratiform base metal sulphide deposits, with examples from the Bathurst Mining Camp", Geochemistry of Sediment and Sedimentary Rocks (2002) 139-170.
[15] Edfelt A., Armstrong R. N., Olof Martinsson M. S., "Alteration paragenrsis and mineral chemistry of the Tjarrojakka apatite-iron and Cu (-Au) occurrences, Kituna area, northern Sweden", Mineralium Deposita 40 (2005) 409-434.
[16] Rollinson H. R., "Using geochemical data: evaluation, presentation, interpretation", Longman Publisher (1993).
[17] Wakita H., Ray P., Scmitt R. A., "Abundance of 14 rare earth elements and 12 other trace elements in Opollo 12samples: igneous &breccia rock" Proc 2nd Lunar Sciences Conf (1971)139-1329.
[18] Einaudi M.T., Meinert L.D., Newberry R.J., "Skarn deposits" Economic Geology, 75 Th Anniversary Issue (1981) 317–391.
[19] Nystrom J.O., Henriquez F., "Magmatic features of iron ore of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry" Economic Geology 89 (1994) 820 – 839.
[20] Barker D. S., "Crystalization and JoAlteration of Quartz Monzonite Iron Springs Mining District, Uta: Relation to Association Iron Deposits" Economic Geology 90 (1995) 2197-2217.
[21] Monteiro L. V. S., Xavier R. P., Hitzman M. W., Juliani C., Filho C. R. S., Carvalho E. R., “Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper–gold deposit, Carajas Mineral Province, Brazil", Ore Geology Reviews 34 (2008) 317–336.
[22] Marschik R., Fontbote L., "The Candelaria–Punta Del Cobre iron oxide Cu–Au (-Zn-Ag) deposits, Chile", Economic Geology 96 (2001) 1799 – 1826.
[23] Tallarico F. H. B., Figueiredo B. R., Groves D. I., Kositcin N., McNaughton N. J., Fletcher I.R., Rego J. L., "Geology and SHRIMP U–Pb geochronology of the Igarape Bahia deposit, Carajas copper–gold belt, Brazil: An Archean (2.57 Ga) example of iron–oxide Cu–Au–(U–REE) mineralization", Economic Geology 100 (2005) 7–28.
[24] White W. M., "Geochemistry", Errata press (2005) 701p.
[25] Bajwah Z. U., Secombe P. K., Offler R., "Trace element distribution, Co: Ni ratios and
Genesis of the Big Cadiairon–copper deposit, New South Wales, Australia", Mineralium Deposita 22 (1987) 292–300.
[26] Russel M. J., Solomon M., Walse J. L., "The genesis of sediment-hosted exhalative Zinc+Lead deposit", Mineralum Deposita 16 (1981) 113-127.
[27] Irvine T. N., Baragar W. R. A., "A guide to the chemical classification of the common volcanic rocks", Canadian Journal of earth Sciences 8 (1971) 523-548.
[28] Pearce J. A., Harris N. B. W., Tiindle A. G., "Trace element discrimination diagrams for the tectonicinterpretation of granitic rocks", Journal of petrology 25 (1984) 956-983.
CAPTCHA Image