Hydrogeochemical and spectroscopic studies of radioactive materials in Ayrakan and Cheshmeh Shotori areas, northeastern Isfahan province

Document Type : Research Article

Authors

1 Isfahan

2 Science and Research Branch, Islamic Azad University

Abstract

Groundwaters hydrochemistry of Ayrakan and Cheshmeh Shotori areas and geochemistry of rare earth elements, indicate Ayrakan alkali granite as the origin of uranium and other dissolved elements in groundwaters of these areas. Geochemical and hydrogeochemical studies as well as the trend of uranium and thorium transition and mobility in aqueous environments of these areas indicate uranium adsorption by iron hydroxide (goethite) as the deterrent agent against uranium transition and mobility from depth to surface. Gamma-ray spectroscopic study of sediments from Cheshmeh Shotori area by HPGe detector indicates the presence of 226Ra in high contents and as the radioactive nuclide that is the reason for high activity of these sediments. Production of 226Ra from 238U decay, shorter half-life of 226Ra compared to 238U, radium transition by groundwaters from depth to surface as well as hydrogeochemical evidences, all suggest the possibility of existence of hidden uranium deposit and uranium mineralization in depth and the distance between Ayrakan and Cheshmeh Shotori areas.

Keywords


[1] Herman C., Thomas E. J., "Introduction to health physics", McGraw-Hill Medical New York (2009) 864.
[2] Babakhani A. R., Susov M., Dvoryankin A., Selivanov E., Desyaterik N.,"Geological Quadrangle map of Jandaq, 1:250,000", Geological Survey of Iran Tehran (1987).
[3] Romanko E., Susov M., Dvoryankin A., Selivanov E., Tkachev E. G., Krivyakin B., Morozov L., Silaev V., Kiristaev V., Desyaterik N., "Geology and minerals of Jandaq area (central iran)", Technoexport Report TE/NO 4 (1979) 171.
[4] Reyer D., Mohafez S., "Une premiere contribution des accords NiOC-ERAP a la connaissancegeologique de l’ Iran", Revue de l InstitutFrancais du Petrole 25 (1970) 979–1014.
[5] Bagheri S., Stampfli G. M., "The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in Central Iran: New geological data, relationships and tectonic implications", Tectonophysics 451 (2008) 123–155.
[6] بهارزاده ح.،"مطالعه پترولوژی گرانیت آیرکان (شمال شرق استان اصفهان"، پایان نامه کارشناسی ارشد، دانشگاه اصفهان، (1387) 114.
[7] بهارزاده ح.، ترابی ق.، احمدیان ج.، ابراهیمیان ز.، "ژئوشیمی توده نفوذی آیرکان، دایکهای آپلیتی و آنکلاوهای موجود در آن (شمال شرق استان اصفهان)"، مجله پژوهشی دانشگاه اصفهان، شماره 3 (1387) 13-32.
[8] Hushmandzadeh A., "Metamorphisme et granitization du massif Chapedony (Iran Central)", UniversiteScientifiqueetMedicale de Grenoble Grenoble France (1969) 242.
[9] GuoquanZ., RuizhongH., Xianwu B., HaishengF., PengqiangS., Jianji T., "REE geochemical characteristics of the No. 302 uranium deposit in northern Guangdong, South
China", ChineseJournal of Geochemistry 26(2007)425-433.
[10] TakahashiY., Yoshida H., Sato N., Hama K., Yusa Y., Shimizu H., "W- and M-type tetrad effects in REE patterns for water–roc systems in the Tono uranium deposit, central Japan", Chemical Geology 184 (2002) 311–335.
[11] Johannesson K. H., Xiaoping Z., "Geochemistry of the rare earth elements in natural terrestrial waters: a review of what is currently known", ChineseJournal of Geochemistry 16 (1997) 20-42.
[12] Iwatsuki T., Yoshida H., "Groundwater chemistry and fracture mineralogy in the basement granitic rock in the Tono uranium mine area, Gifu Prefecture, Japan-groundwater composition, Eh evolution analysis by fracture filling minerals", Geochemistry: Exploration Environment Analysis 33 (1999) 19 – 32.
[13] Noller B. N., "Watters RA, Woods PH. The role of biogeochemical processes in minimising uranium dispersion from a mine site", Journal of Geochemical Exploration 58 (1997) 37 – 50.
[14] گروه ژئوفیزیک سازمان انرژی اتمی، "گزارش اکتشاف ژئوفیزیکی منطقه عروسان (کوه آیرکان-چشمه شتری)"، گزارش داخلی سازمان انرژی اتمی، (1363) 20.
[15] Duff M. C., Coughlin J. U., Hunter D. B., "Uranium coprecipitation with iron oxide minerals", Geochimica et CosmochimicaActa66 (2002) 3533– 3547.
[16] Waite T. D., Davis J. A., Payne T. E., Waychunas G. A., Xu N., "Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model", Geochimica et CosmochimicaActa58 (1994) 5465–5478.
[17] Murakami T., Sato T., Ohnuki T., Isobe H., "Field evidence for uranium nanocrystallization and its implications for uranium transport", Chemical Geology 221 (2005) 117–126.
[18] Cheng T., Barnett M. O., Roden E. E., Zhuang J., "Reactive transport of uranium(VI) and phosphate in a goethite-coated sand column:Anexperimental study", Chemosphere 68 (2007) 1218–1223.
[19] Brugger J., Long N., McPhail D. C., Plimer I., "An active amagmatic hydrothermal system: The Paralana hot springs, Northern Flinders Ranges, South Australia", Chemical Geology 222 (2005) 35– 64.
[20] Luo G., Weber F-A., Cirpka O. A., Wu W. M., Nyman J. L., Carley J., Jardine P. M., Criddle C. S., Kitanidis P. K., "Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria", Journal of Contaminant Hydrology 92 (2007) 129–148.
[21] Wazne M., Korfiatis G. P., Meng X. G., "Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide", Environtal Science Technology 37 (2003) 3619–3624.
[22] Langmuir D., "Uranium solution–mineral equilibria at low temperatures with applications to sedimentary ore deposits", GeochimicaetCosmochimicaActa42 (1978) 547– 569.
[23] Simon F. G., Biermann V., Segebade C., Hedrich M., "Behaviour of uranium in hydroxyapatite-bearing permeable reactive barriers: investigation using 237U as a radioindicator", The Science of the Total Environment 326 (2004) 249–256.
[24] Schwertmann U., Cornell R. M., "Iron Oxides in the Laboratory", Wiley-VCH Weinheim (2000) 188.
[25] Hiemstra T., Hiemstra W. H. V., Rossberg A., Ulrich K-U., "A surface structural model for ferrihydrite II: Adsorption of uranyl and carbonate", GeochimicaetCosmochimicaActa73 (2009) 4437–4451.
[26] His C-K. D., Langmuir D., "Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model", GeochimicaetCosmochimicaActa 49 (1985) 1931–1941.
[27] Duff M C., Amrhein C., "Uranium (VI) adsorption on goethite and soil in carbonate solutions", Soil Science Society of America Journal 60 (1996) 1393–1400.
[28] Abdelouas A., Lutze W., Gong W., Nuttall E. H., Strietelmeier B. A., Travis B. J., "Biological reduction of uranium in groundwater and subsurface soil", Science of the Total Environment 250 (2000) 21-35.
[29] Gavrilescu M., Pavel L. V., Cretescu I., "Characterization and remediation of soils contaminated with uranium", Journal of Hazardous Materials 163 (2009) 475–510.
[30] Payne T. E., Waite T. D., "Surface complexation modeling of uranium sorption obtained by isotope exchange techniques", Radiochim. Acta 53 (1991) 487–493.
[31] Langmuir D., "Aqueous Environmental Geochemistry", Prentice Hall New Jersey (1997) 600.
[32] Appelo C. A. J., Postma D., "Geochemistry, Groundwater and Pollution", Brookfield Rotterdam (1999) 536.
[33] Fredrickson J. K., Zachara J. M., Kennedy D. W., Duff M. C., Gorby Y. A., Li S. M. W., Krupka K. M., "Reduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium", Geochimica et CosmochimicaActa 64 (2000) 3085–3098.
[34] Simon F. G., Segebade C., Hedrich M., "Behaviour of uranium in iron-bearing permeable reactive barriers: investigation with 237U as a radioindicator", The Science of the Total Environment 307 (2003) 231–238.
[35] Yan S., Hua B., Bao Z., Yang J., Liu C., Dend B., "Uranium(VI) Removal by NanoscaleZerovalent Iron in Anoxic Batch Systems", Environtal Science Technology 44 (2010) 7783–7789.
[36] Langmuir D., Herman J. S., "The mobility of thorium in natural waters at low temperature", GeochimicaetCosmochimicaActa 44 (1980) 1753–1766.
[37] Pirlo M. C., Giblin A. m., "Application of groundwater–mineral equilibrium calculations to geochemical exploration for sediment-hosted uranium: observations from the Frome Embayment, South Australia", Geochemistry: Exploration Environment Analysis (2004) 113–127.
[38] Alaez C. F., Alaez M. F., Dominguez C. T., Santos B. L., "Hydrochemistry of orthwest Spain ponds and relationships to groundwaters", Limnetica 25 (2006) 433-452.
[39] Putter Th. De., Andre L., Bernard A., Dupuis Ch., Jedwab J., Nicaise D., Perruchot A., "Trace element (Th, U, Pb, REE) behaviour in a cryptokarstic halloysite and kaolinite deposit from Southern Belgium: importance of ‘‘accessory’’ mineral formation for radioactive pollutant trapping", Applied Geochemistry 17 (2002) 1313–1328.
[40] Sani R. K., Peyton B. M., Amonette J. E., Geesey G. G., "Reduction of uranium(VI) under sulfate-reducing conditions in the presence ofFe(III)-(hydr)oxides", Geochimica et CosmochimicaActa 68 (2004) 2639–2648.
[41] Arthur R. C., Iwatsuki T., Sasao E., Metcalfe R., Amano K., Ota K., "Geochemical constraints on the origin and stability of the Tono Uranium Deposit, Japan", Geochemistry: Exploration Environment Analysis 6 (2006) 33–48.
[42] Gavrilesc M., Pavel L. V., Cretescu I., "Characterization and remediation of soils contaminated with uranium", Journal of Hazardous Materials 163 (2009) 475–510.
[43] SarangiA. K., Krishnamurthy P., "Uranium metallogeny with special reference to Indian deposits", Transactions of MGMI 104 (2008) 19-54.
[44] Simon F. G., Segebade C., Hedrich M., "Behaviour of uranium in iron-bearing permeable reactive barriers:investigation with 237U as a radioindicator", The Science of the Total Environment 307 (2003) 231–238.
[45] Tsoulfanidis N., "Measurement and detection of radiation", Taylor & Francis New York (1995) 614.
[46] Abdi M. R., Faghihian H., Mostajaboddavati M., Hasanzadeh A., Kamali M., "Distribution of natural radionuclides and hot points in coasts of Hormozgan, Persian Gulf, Iran", Journal of Radioanalytical and Nuclear Chemistry 270 (2006) 319– 324.
[47] Poschl M., Nollet L. M. L., "Radionuclide Concentrations in Food and the Environment", Taylor & Francis New York (2007) 458.
[48] Abdi M. R., Hassanzade S., Kamali M., Raji H. R., "238U, 232Th, 40K and 137Cs activity concentrations along the southerncoast of the Caspian Sea, Iran", Marine Pollution Bulletin 58 (2009) 658–662.
[49] Hameed P. S., ShaheedΚ.,Somasundaram S. S. Ν., Iyengar Μ. A. R., "Radium-226 levels in the Cauvery river ecosystem, India", Journal of Biosociety 22 (1997) 225–231.
[50] Mayneord W. V., Turner R. C., Radley J. Μ.,"Alpha activity of certain botanical materials", Nature London 187 (1960) 208-211.
[51] Pearson J. Ε., Jones G. Ε., "Soil concentration of emanating Radium-226 and the emanation of Radon-222 from soils and plants", Tellus 18 (1966) 655-66.
[52] Iyengar M. A. R., "The environmental behaviour of Radium", Technical Reports Series IAEA 1 (1990) 59-128.
[53] Lauria D. C., Godoy J. M. O., "Origin and transport of radium in the water column of Buena Coastal Lagoon", Environmental Changes and Radioactive Tracers (2002) 471-482.
[54] Kraemer T. F., Reid D. F., "The Occurrence and Behavior of Radium in Saline Formation Water of the U.S. Gulf Coast Region", Isotope Geoscience 2 (1984)153-174.
[55] Hancock G. J., Murray A. S., "Source and distribution of dissolved radium in the Bega river estuary, Southeastern Australia", Earth andplanetary science Letters 138 (1996) 145-155.
[56] Langmuir D., "The Thermodynamic Properties of Radium", GeochimicaetCosmochimicaActa 49 (1985) 1593-1601.
[57] Moore W. S. E., Shaw T. J., "Chemical Signais from Submarine Fluid Advection onto the Continental Shelf", Journal of GeophysicalResearch 103 (1998) 21543-21552.
[58] Baeza A., del Rio L. M., Jimenez A., Miro C., Paniagua J. M., "Factors determining the radioactivity levels of waters in the Provience of Caceres (Spain)", Applied Radiation and Isotopes 46 (1995) 1053–1059.
[59] Almeida R. M. R., Lauria D. C., Ferreira A. C., Sracek O., "Groundwater radon, radium and uranium concentrations in Regiao dos Lagos, Rio de Janeiro State, Brazil", Journal of Environmental Radioactivity 73 (2004) 323–334.
CAPTCHA Image