بررسی زمین شناسی و زمین‌ شیمی کانسار مس- طلای پورفیری- اپی‌ ترمال چوران در زیر پهنه دهج- ساردوئیه از کمان ماگمایی ارومیه- دختر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه زمین‌ شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشجوی دکتری، گروه زمین‌ شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استادیار، گروه زمین‌ شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

4 دانشیار، گروه زمین‌ شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

5 دانشیار، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

کانسار مس- طلای چوران در 70 کیلومتری شهرستان بردسیر و در بخش جنوبی کمربند ماگمایی ارومیه- دختر قرار‌گرفته است. کانه زایی در این منطقه مرتبط با توده ­های گرانودیوریت و کوارتز دیوریت با سن الیگو- میوسن است که در توالی آتشفشانی- رسوبی ائوسن نفوذ کرده­اند. کانه ­زایی از عمق به سطح به ترتیب شامل کانه­ های مگنتیت، پیریت، کالکوپیریت، آرسنوپیریت، اسفالریت، گالن و تورمالین است. در قسمت­ های  سطحی کانسار رگه ­های سیلیسی سولفیدی با ضخامت ­های متغیر (50 تا 150 سانتی‌متر) دیده می شود. عمده دگرسانی ­ها در این کانسار از عمق به سطح، شامل دگرسانی ­های سدیک- کلسیک، پتاسیک، فیلیک (مربوط به یک سامانه پورفیری)، آرژیلیک، آلونیت (مربوط به یک سامانه اپی‌‌ترمال) و در قسمت‌های سطحی دگرسانی سیلیسیک است. بر اساس بررسی‌های شیمی سیلیکات، پلاژیوکلازهای توده­ های گرانودیوریت و کوارتزدیوریت از نوع آندزین است. بر اساس نمودار Al / (Ca + Na + K) (apfu)  در مقابلAn% ، کلیه پلاژیوکلازهای توده گرانودیوریتی کانسار چوران در محدوده نفوذی­های کانه­ دار و پلاژیوکلازهای کوارتزدیوریت در محدوده نفوذی­های نابارور به سمت بارور قرار‌گرفته است. میزان فلوئور‌IV(F), ، کلر IV (Cl) و نسبت فلوئور به کلرIV (F/Cl) در بیوتیت‌های کوارتز دیوریت، به ترتیب 2/2تا0/4، 6/5- تا 5/5-، 8/7 تا 6/9 و در گرانودیوریت به ترتیب 0/2 تا 4/2، 8/5- تا 6/5- و (7/7 تا 1/8) است. با توجه به ویژگی‌هایی مانند تغییرات نوع کانه­ زایی، دگرسانی و مشاهدات صحرایی می‌توان اظهار داشت، که کانسار مس- طلای چوران مثالی از یک سامانه انتقالی پورفیری به لیتوکپ اپی‌ترمال سولفیداسیون بالاست.

کلیدواژه‌ها


Ague, J.J. and Brimhall, G.H., 1988. Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: effects of assimilation, cratonal thickness and depth of crystallization. GSA Bulletin, 100(1): 912–927. https://doi.org/10.1130/0016-7606(1988)100<0912:MAAADO>2.3.CO;2
Ahmadian, J., Haschke, M., McDonald, I., Regelous, M., Ghorbani, M., Emami, M. and Murata, M., 2009. High magmatic flux during Alpine–Himalayan collision: constraints from the Kal-e-Kafi complex, central Iran. Geological Society of America Bulletin, 121(5–6): 857– 868. https://doi.org/10.1130/B26279.1
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3–4): 211–238. https://doi.org/10.1016/0040-1951(94)90030-2
Almeev, R.R. and Ariskin, A.A., 1996. Mineralmelt equilibria in a hydrous basaltic system: computer modeling. Geochemistry International, 34(7): 563–573. Retrieved Swptember 1, 1996 from https://www.academia.edu/17785119/MineralMelt_Equilibria_in_a_Hydrous_Basaltic_System_Computer_Modeling
Asadi, S., Moore, F. and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcanoplutonic belt, Kerman region, Iran: a review. Earth-Science Reviews, 138(3): 25–46. https://doi.org/10.1016/j.earscirev.2014.08.001
Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H.A. and Yavuz, R., 2008. Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineralogy and Petrolology, 94(1): 107–122. https://doi.org/10.1007/s00710-008-0006-5
Berberian, M. and King, G.C., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265. https://doi.org/10.1139/e81-019
Berberian, F., Muir, I.D., Pankhurst, R.J. and Berberian, M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139(5): 605–614. https://doi.org/10.1144/gsjgs.139.5.0605
Boomeri M., Nakashima K. and Lentz, DR., 2010. The Sarcheshmeh porphyry copper deposit, Kerman, Iran: A mineralogical analysis of the igneous rocks and alteration zones including halogen element systematic related to Cu mineralization processes. Ore Geology Reviews, 38(5): 367–381. https://doi.org/10.1016/j.oregeorev.2010.09.001
Brimhall, G.H. and Crerar, D.A., 1987. Ore fluids, Magmatic to supergene, in thermodynamic modeling of geological materials. Reviews in Mineralogy and Geochemistry, 17(1): 235–321. https://doi.org/10.1515/9781501508950-010
Chang, Z., Hedenquist, J.W., White, N.C., Cooke, D. R., Roach, M., Deyell, C.L. and Cuison, A. L., 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106(8): 1365–1398. https://doi.org/10.2113/econgeo.106.8.1365
Deer, W.A., Howie, R.A. and Zussman, J., 1992. An Introduction to the Rock Forming Minerals, Second Longman Editions. Longman, London, 696 pp. https://doi.org/10.1180/DHZ
Franchini, M., McFarlane, C., Maydagán, L., Reich, M., Lentz, D.R., Meinert, L. and Bouhier, V., 2015. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geology Reviews, 66(3): 366–387. https://doi.org/10.1016/j.oregeorev.2014.10.022
Gregory, M.J., 2017. A fluid inclusion and stable isotope study of the Pebble porphyry copper-gold-molybdenum deposit, Alaska. Ore Geology Reviews, 80(5): 1279–1303. https://doi.org/10.1016/j.oregeorev.2016.08.009
Hedenquist, J., 2000. Exploration for Epithermal Gold deposits. Society of Exploration Geophysicists Reviews, 13(1): 245–277. https://doi.org/10.5382/Rev.13
Hedenquist, J.W., Arribas, A., J.r. and Reynolds, T.J., 1998. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 373–404. https://doi.org/10.2113/gsecongeo.93.4.373
Heidari, M., Zarasvandi, A., Rezaei, M., Raith, J. and Saki, A., 2018. Physicochemical Attributes of Parenta Magma in Collisional Porphyry Copper Systems; Using Biotite Chemistry, Case Study: Chahfiruzeh Porphyry Copper Deposit. Journal of Economic Geology, 10(2): 561–586. https://doi.org/10.22067/ECONG.V10I2.65652
Hezarkhani, A. and Williams, A.E., 1998. Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: evidence from fluid inclusions and stable isotopes. Economic Geology, 93(5): 651–670. https://doi.org/10.2113/gsecongeo.93.5.651
Hosini, Z., Ghaemi, J. and Mohbi, A., 1994. Geological map of Sirzan, scale 1:250,000. Geological Survey of Iran.
Khan nazer, N.H., 1995. Geological map of Chargonbad, scale 1:100,000. Geological Survey of Iran.
Kirkham, R.V. and Dunne, K.P., 2000. World distribution of porphyry, porphyry-associated skarn, and bulk-tonnage epithermal deposits and occurrences, Natural Resources Canada, Geological Survey of Canada, Open File, Volume 3792, Part 1, 87 pp. https://doi.org/10.4236/ojg.2018.86035
Kouhestani, H., Ghaderi, M., Zaw, Khin., Meffre, S. and Emami, M.H., 2012. Geological setting and timing of the Chah Zard breccia-hosted epithermal gold–silver deposit in the Tethyan belt of Iran. Mineral Deposita, 47(4): 425–440. https://doi.org/10.1007/s00126-011-0382-3
 Lalonde, A.E. and Bernard, P., 1993. Composition and color of biotite from granites: two useful Properties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay orogeny, Northwest Territories. The Canadian Mineralogist, 31(1): 203–217. Retrieved March 03, 1993 from https://pubs.geoscienceworld.org/canmin/article abstract/31/1/203/12452/Composition-and-color-of-biotite-from-granites-two?redirectedFrom=fulltext
Munoz, J.L., 1984. F–OH and Cl–OH exchange in micas withapplications to hydrothermal ore deposits. In: S.W. Bailey (Editor), Micas. Mineralogical Society of America Reviews in Mineralogy, Volune 13, pp. 469–493. Retrieved January 01, 1984 from https://pubs.geoscienceworld.org/canmin/article-abstract/31/1/203/12452/Composition-and-color-of-biotite-from-granites-two?redirectedFrom=fulltext
Muntean. J., 2001. Porphyry-Epithermal Transition: Maricunga Belt, Northern Chile. Economic Geology, 96(4): 743–772. https://doi.org/10.2113/gsecongeo.96.4.743
Nachit, H., Ibhi, A.B., Abia, El-H., El Hassan, A. and Ben Ohoud, M., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites, and neoformed biotites. Comptes Rendus Geoscience, 337(16): 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002
Pletchov, P.Y. and Gerya, T.V., 1998. Effect of H2O on plagioclase-melt equilibrium. Experiment in Geosciences, 7(2): 7–9. https://doi.org/10.2138/am.2012.4100
Pourkaseb, H., Zarasvandi1, A., Saed, S. Davoudian Dehkordy, A., 2017. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry. Journal of Economic Geology, 9(1): 73–92. (in Persian with English abstract)  https://doi.org/10.22067/ECONG.V9I1.51704
Putirka, K.A., 2005. Igneous thermometers and barometers based on plagioclase plus liquid equilibria: tests of some existing models and new calibrations. American Mineralogist, 90(2–3): 336–346. https://doi.org/10.2138/am.2005.1449
Richards, J.P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107(3): 295–332. https://doi.org/10.2113/econgeo.107.2.295
Richards, J.P., Wilkinson, D. and Ullrich, T., 2006. Geology of the Sari Gunay epithermal gold deposit, northwest Iran. Economic Geology, 101(8): 1455–1496. https://doi.org/10.2113/econgeo.107.2.295
Shafiei, B., 2012. Discrimination between productive and non-productive granitoid intrusions in Kerman porphyry copper belt: Results of preliminary petrographic studies. Journal of Advanced Applied Geology, 2(1): 1–7. Retrieved August 01, 2012 from https://aag.scu.ac.ir/article_11549.html?lang=en
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3): 265–281. https://doi.org/10.1007/s00126-008-0216-0
Shafiei, B. and Shahabpour, J., 2008. Gold distribution in porphyry copper deposits of Kerman region, Southeastern Iran. Journal of Sciences, Islamic Republic of Iran, 19(3): 247–260. Retrieved November 01, 2008 from https://jsciences.ut.ac.ir/article_31898_d85486b4c0968032c431d13c3a137f20.pdf
Shahabpour, J. and Kramers, J.D., 1987. Lead isotope data from the Sar-Cheshmeh porphyry copper deposit, Iran. Mineralium Deposita, 22(4): 278–281. https://doi.org/10.1007/BF00204520
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
Taghipour, N., Aftabi, A. and Mathur, R., 2008. Geology and Re-Os Geochronology of Mineralization of the Miduk Porphyry Copper Deposit, Iran. Resource Geology, 58(18): 143–160. https://doi.org/10.1111/j.1751-3928.2008.00054.x
Takin, M., 1972. Iranian geology and continental drift in the Middle East. Nature, 235(53): 147–150. https://doi.org/10.1038/235147a0 
Teiber, H., Scharrer, M., Marks, M.A.W., Arzamastsev, A.A., Wenzel, T. and Markl, G., 2015. Equilibrium partitioning and subsequent re-distribution of halogens among apatite–biotite–amphibole assemblages from mantle-derived plutonic rocks. Complexities revealed. Lithos, 220(223): 221–237. https://doi.org/10.1016/j.lithos.2015.02.015
Tischendorf, G., Gottesmann, B., Förster, H.J. and Trumbull, R.B., 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(1): 809–834. https://doi.org/10.1180/minmag.1997.061.409.05
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-formingminerals. American Mineralogist, 95(1): 185-187. https://doi.org/10.2138/am.2010.3371
Williamson, B.J., Herrington, R.J. and Morris, A., 2016. Porphyry copper enrichment linked to excess aluminium in plagioclase. Nature Geoscience, 9(3): 237–241. https://doi.org/10.1038/ngeo2651
Willmore, C.C., Boudreau, A.E. and Kruger, F.J., 2000. The halogen geochemistry of the Bushveld Complex, Republic of South Africa: implications for chalcophile element distribution in the lower and critical zones. Journal of Petrology, 41(10): 1517–1539. https://doi.org/10.1093/petrology/41.10.1517
Yavuz, F., 2003. Evaluating micas in petrologic and metallogenic aspect: Part II – Applications using the computer program Mica+. Computers and Geosciences, 29(10): 1215–1228. https://doi.org/10.1016/S0098-3004(03)00143-2
Zarasvandi, A., Liaghat, S. and Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, central Iran. International Geology Review, 47(6): 620–646. https://doi.org/10.2747/0020-6814.47.6.620
Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S., Saed, M. and Lentz, D.R., 2018. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geochimica et Cosmochimica Acta, 223(36): 36–59. https://doi.org/10.1016/j.gca.2017.11.012
CAPTCHA Image