مطالعه کانی‌ شناسی و زمین‌ شیمی آپاتیت و سنگهای میزبان فسفات در کانسار اسفوردی استان یزد با هدف تعیین منشأ و خاستگاه آپاتیت

نوع مقاله : علمی- پژوهشی

نویسندگان

شیراز

چکیده

کانسار آهن-آپاتیت اسفوردی درشمال شرق شهرستان بافق در استان یزد و در زون ساختاری ایران مرکزی درون سنگهای عمدتاً ریولیتی با سن اینفراکامبرین قرار دارد. مگنتیت و آپاتیت به عنوان کانیهای اصلی به همراه کانیهای فرعی هماتیت و گوتیت در مناطق کانه زایی شده تشکیل شده‌اند. شواهد صحرایی حاکی از وجود سه نوع کانی زایی آپاتیت به صورت رگه ای، توده ای و انتشاری است. داده های پتروگرافی نشانگر حضور سه نسل آپاتیت در این کانسار است: نسل 1 در بخشهای توده ای و افشان، نسل 2 در زون‌های برشی و نسل 3 که حاصل انحلال و رسوب مجدد آپاتیت های نوع 1 و 2 است، در شکلهای رگه ای قابل تشخیص هستند. تجزیه با ریزپردازنده الکترونی نشان می دهند که آپاتیت های مزبور از نوع فلوئورآپاتیت غنی از LREE هستند. شباهت الگوی REE در نمونه های آپاتیت، کانسنگ مگنتیتی و ریولیت میزبان نیز نشانگر منشا یکسان آنهاست. شیب منفی نمودار توزیع REE و بی هنجاری منفی Eu حاکی از شباهت آنها به کانسارهای آهن-آپاتیت تیپ کایروناست. پایین بودن میزان Cd، حضور U و Th ، وجود بلورهای هگزاگونال و میزان Na بسیار کم در این آپاتیت نیز وجود منشأ آذرین را نشان می دهد. متغیر بودن نسبت Th/U حاکی از دخالت تلفیقی از فرآیندهای ماگمایی و گرمابی در تشکیل این کانسار است. کانسار اسفوردی احتمالاً در یک محیط کششی قوسی در ارتباط با سنگهای گرانیتوئیدی همزمان با تصادم قاره ای تشکیل شده است.

کلیدواژه‌ها


Alves, P.R., 2008. The carbonatite-hosted deposit of Jacupiranga, SE Brazil: styles of mineralization, ore characterization, and association with mineral processing. M.Sc. thesis, Missori University of Sciences and Technology, USA, 140 pp.
Andreoli, M.A.G., Smith, C.B., Watkeys, M., Moore, J.M., Ashwal, L.D. and Hart, R.J., 1994. The geology of the Steenkampskraal monazite deposit, South Africa: Implications for REE-Th-Cu mineralization in charnockite-granuliteterranes. Economic Geology, 89(5): 994–1016.
Baier, E., 1940. Das iransche binnenland ostlich beckens Von Nain-yazd Neues jahrbuch fur mineralogy, Geology und palaontologie,Beilage- band. Neues Jahrbuch für Mineralogie Abhandlungen, 83(1): 46-86.
Belousova, E.A., Griffin, W.L., O Reilly, S.Y. and Fisher, N.I., 2002. Apatites as indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76(1): 45-69.
Bohen, E., 1929. Uberblick uber die erzlagerstatter per siens unden derzeitigen stand Von gewinnung und Verhuttung. Erzmetall, 26(4): 57-61.
Bonyadi, Z., 1999. Geochemistry and genesis of Narigan manganese deposit, Bafgh-Yazd. M.Sc. thesis, Siraz University, Shiraz, Iran, 157 pp. (in Persian)
Borumandi, H., 1973. Petrographische and Lagerstatten Kundliche unter suter suchungen der Esfordi – formation zwischen Mishdowan and Kushk bie bafgh central iran. Ph.D. Dissertation, Aachen University, Aachen, Germany, 174 pp.
Boynton, W.V., 1985. Cosmochemistry of the rare earth elements: Meteorite studies. In: P. Henderson) Editor), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 115-1522.
Chu, M.F., Wang, K.L., Griffin, W.L., Chung ,S.L., O’Reilly, S.Y., Pearson, N.J. and Iizuka Y. 2009. Apatite composition: Tracing petrogenetic processes inTranshimalayan granitoids. Journal of Petrology, 50(10): 1829-1855.
Coppin, F., Berger, G., Castet, S. and Loubet ,M., 2002. Sorption of lanthanides on smectite and kaolinite. Chemical Geology, 182(1): 57-68.
Cox, K.J., Bell, J.D. and Pankhurst, R.J., 1979. The interpretation of igneous rocks. George Allen and Unwin, London, 464 pp.
Daliran, F., 1999. REE geochemistry of Kiruna –type iron ores. In: C. J. Stanley (Editor), Mineral Deposite, processes to processing. Balkema, Rotterdam, pp. 631-634.
Daliran, F., 2002. Kiruna-type iron oxide-apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. In: T.M. Porter (Editor), Hydrothermal iron oxide copper - gold and related deposits, PGC Publishing, Linden Park, South Australia, pp. 303-320.
Darvishzadeh, A., 1983. Investigation of Bafg-Esfordi phosphate. Journal of Sciences Tehran University, 13(1-2): 2-24 (in Persian).
Edfelt, A., 2007. The Tjårrojåkka Apatite-Iron and Cu (-Au) Deposits, Northern Sweden. Ph.D. thesis, Division of Ore Geology and Applied Geophysics, Luleå University of Technology, Sweden, 230 pp.
Ezatian, E., 2002. Atlas of igneous rocks, classification and nomenclature. Geological Survey of Iran.
Farkhondi Sorkhabi, K., 1998. Investigation of rare earth elements (REE) and Nb distributions in iron-apatite deposits of Bafgh area. M.Sc. thesis, Shahid Beheshti University, Tehran, Iran, 234 pp. (in Persian)
Förster, H. and Borumandi, H., 1976. Petrographic observation on a magnetite deposit at Mishdovan, Central Iran. Economic Geology, 74(1): 1485-1489.
Förster, H. and Jafarzadeh, A., 1994. The Bafq mining district in Central Iran a highlymineralized Infracambrian volcanic field. Economic Geology, 89(8):1697-1721.
Förster, H. and Knittel, U., 1979. Petrographic observation on a magnetite deposit at mishdovan, central Iran. Economic Geology, 74(6): 1485-1489.
Frietsch, R. and Perdahl, J.A., 1995. Rare earth elements in apatite and magnetite in kiruna –type iron ores and some other iron ore type. Ore Geology Reviews, 9(6): 489-510.
Fuge, R., 1977, On the behavior of fluorine and chlorine during magmatic differentiation. Contributions to Mineralogy and Petrology, 61(3): 245-249.
Haghipour, A., 1974. Etude geologique la region de Biabanak - Bafq (Centeral Iran); Petrologie et tectonique du socle percamberien et sacouverture. Ph.D. These, Universite Scientifique et Medicale de Grenobal, France , 403 pp.
Hall, A., 1998. Igneous Petrology. Longman, UK, 550 pp.
Helvaci, C., 1984. Apatite-Rich Iron Deposits of the Avnik (Bingol) Region, Southeastern Turkey. Economic Geoloy, 79(2): 354-371.
Hitzman, M.W., Oreskes ,N. and Einaudi, M.T., 1992. Geological characteristics and tectonic setting of Proterozoic Iron oxide (Cu-U-Au-LREE) deposits. Precambrian Research, 58(1-4): 241-287.
Hooshmandzadeh , A., Nabavi, M.J. and Hamdi, B., 1988. Precambrian-Lower Cambrian rocks in Iran. 1st Conference of Investigation on Resources and Mineral Potential in Yazd Province, Yazd, Iran. (in Persian)
Houkriede, R., Kursten, M. and Vanzlaff, H., 1962. Zur geologeie des gebeietes zwischen kerman und Saghand (Iran). Beihefte zum Geologischen Jahrbunch, 51(2): 1-179.
Hsieh, P.S., Chen, C.H., Yang, H.J. and Lee, C.Y. 2008. Petrogenesis of the Nanling Mountains granites from South China: Constraints from systematic apatite geochemistry and whole-rock geochemical and Sr–Nd isotope compositions. Journal of Asian Earth Sciences, 33(5-6): 428–451.
Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548.
Iwao, S. and Zahedi, M., 1966. Geology and iron ore deposit of Chadormalu mine Bafgh area Central Iran. Geological Survey of Iran, Tehran, Report 10, 8 pp.
Jami, M., 2005. Geology, Geochemistry and Evolution of theEsfordi Phosphate – Iron Deposit, Bafq Area, Central Iran. Ph.D. thesis, The University of New South Wales, Australia, 220 pp.
Jensen, L.S., 1976. A new cation plot for classifying subalkalic volcanic rocks. Division of Mines, Ontario, Report 66, 22 pp.
Jinjie,Y.U., Qi, Z., Jingwen, M., Shenghao, Y. 2007, Geochemistry of Apatite from the Apatite-rich Iron Deposits in the Ningwu Region, East Central China. Acta Geologica Sinica (English Edition), 81(4): 637–648.
Jones, A.P., Wall, F. and Williams, C.T. 1996. Rare Earth Minerals: Chemistry, Origin and Ore Deposits. Mineralogical Society of Great Britain and Ireland: The Mineralogical Society Series. 7. Chapman & Hall, UK, 372 pp.
Koeppenkastrop, D. and De Carlo, E.H., 1993. Uptake of rare earth elements from solution by metal oxides. Environmental and Science Technology, 27(9): 1796-1802.
Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Review, 7(1): 25-41.
Lovering, T.G. and Heyl, A.V., 1974. Jasperoid as a guide to mineralization in the Taylor mining district and vicinity near Ely, Nevada. Economic Geology, 69(1): 46-58.
Mathez, E.A. and Webster, J.D., 2005. Partitioning behavior of chlorine and fluorine in the system apatite- silicate melt- fluid. Geochimica et Cosmochimica Acta, 69(5): 1275-1286.
Moor, F. and Modabberi, S., 2003. Origin of choghart iron oxide deposite Bafq minig districte, centeral Iran: new isotopic and geochemical evidences. Journal of Sciences Islamic Republic of Iran, 14(3): 259-269.
Moosavinasab, Z., 1997. Geochemistry and genesis of Choghart iron deposit, Bafgh-Yazd. M.Sc. thesis, Shiraz University, Tehran, Iran, 201 pp. (in Persian)
Nystrom, J.O. and Henriquez, R., 1994. Magmatic features of iron ores of the kiruna type in chile and widen: ore textures and magnetite geochemistry. Economic Geology, 89(4): 820-839.
Paknejad, H., 1991. Complementary exploration of Esfordi deposit. Geological Survey of Iran, Tehran, Report 11, 89 pp. (in Persian)
Parak, T., 1975. Kiruna iron ores are not ‘intrusive-magmatic ores of the Kiruna type. Economic Geology, 70(7): 1242–1258.
Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983.
Pichler, H. and Reigraf, C.S. (Translated by Mehrabi, F.), 1995. Gesteinsbildende minerale im duennschliff. Shiraz University Press, Shiraz, 230 pp. (in Persian)
Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation. Routledge, USA, 384 pp.
Rønsbo, J.G., 1989. Coupled substitution involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist, 74: 896–901.
Ruzicka, V., 1990. Vein uranium deposits. Ore Geology Review, 8: 247 - 276.
Samani, B., 1998. Precambrian metallogenic in Central Iran. Scientific Bulletin of the Atomic Energy Organization of Iran, 17(1): 1-16.
Stahl, A.F., 1911. Persian. In: A.F. Stahl (Editor), Handbuch der regionalen geologie. Heidelberg (Winter), Germany, pp. 275-279.
Sverjensky, D.A., 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1): 70-78.
Torab, F., 2008. Geochemistry and metallogeny of magnetite-apatite deposits of the Bafq Mining District, Central Iran. Ph.D. Thesis, Faculty of Energy and Economic Sciences, Clausthal University of Technology, Germany, 144 pp.
Torab, F.M., 2010. Geochemistry and radioisotope investigations to determine apatite setting in iron-apatite deposits in Bafgh mining district. Irananin Journal of Crystallographyand Mineralogy, (3): 409-418. (in Persian)
White, R.A., 2000. Behavior of the rare earth elements in ochreous mine drainage: a elaborately and field study. Ph.D. thesis, University of Wales, UK, 210 pp.
Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20:325-343.
Witford, D.J., Korsch, M.J., Porritt, P.M. and Craven, S.J., 1980. Rare earth elemnt mobility around the volcanogenic polymetallic massive sulfide deposit at Que river, Tasmania Australia. Chemical Geology, 68(1): 105-119.
Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50(1): 11-30.
Zui, C., 1994. Evolution of apatite mineralization Potential in Central Iran. Remote Sensing Project. Iranian Ministry of Industry and Mine, Tehran, Report 2, 20 pp.
CAPTCHA Image