مقایسه روشهای داده پایه و طیف مبنا جهت نقشه برداری از مناطق دارای کائولینیت در آتشفشان مساحیم با استفاده از داده های هایپریون

نوع مقاله : علمی- پژوهشی

نویسندگان

شهید باهنر کرمان

چکیده

داده های ابر طیفی سنجنده هایپریون حاوی اطلاعات بسیار غنی از بازتابهای الکترومغناطیس سطح زمین در 242 باند ظریف و پیوسته هستند. دست یابی به این گنجینه اطلاعاتی منوط به اعمال پردازشی مناسب بر روی داده های خام ماهواره ای است. روشهای پردازش تصاویر ماهواره ای را می توان به دو گروه آمار پایه و طیف مبنا تقسیم کرد. در روشهای آمار پایه اصول پردازش بر پایه نحوه پراکندگی هیستوگرام مقادیر پیکسلی هر باند اطراف میانگین، مود و میانه داده ها بنا نهاده می شود، در حالی که در روشهای طیف مبنا، از ابتدای پردازش می بایست الگوی طیفی مرجعی مشخص و در دست باشد. پردازش بر پایه الگوی طیفی مرجع و تناسب محدوده های جذب و بازتاب هدف مورد نظر با محدوده های متناظر در الگوی مرجع بنا نهاده می شود. در این پژوهش به بررسی نتایج حاصل از هر دو نوع روش پردازش تصویر و مقایسه ضریب صحت هر کدام در برابر داده های صحرایی پرداخته شده است. مطالعات میدانی و آزمایشگاهی شامل بررسی نقاط با حداکثر شدت دگرسانی، طیف نگاری، آزمایش XRD و مطالعه مقاطع میکروسکپی نمونه های سنگی برداشت شده از منطقه می شود. روشهای پردازش تصویر SAM و PCA به ترتیب به عنوان روشهای طیف مبنا و آمار پایه بر روی تصویر هایپریون زون آرژیلیک در منطقه آتشفشان مساحیم اعمال گردید. روش MTMF نیز به عنوان روشی که علاوه بر استفاده از طیف مرجع اصول آماری تصویر را نیز درگیر پردازش می کند مورد بررسی قرار گرفت. محاسبه ماتریس صحت و تعیین ضریب صحت عامل مناطق حداکثر امکان در روش های SAM ، PCA و MTMF ضریب 58/74درصد برای پردازش با روش SAM و ضرایب 42/25و 61 درصد به ترتیب برای مناطق حداکثر امکان در روشهای PCA و MTMF را نشان می دهد. بنابراین استفاده از روشهای طیف مبنا در پردازش تصاویر ابر طیفی پیشنهادی مناسب جهت مطالعات دورسنجی سطح زمین با استفاده از داده های سنجنده هایپریون به حساب می آید.

کلیدواژه‌ها


[1] عطاپور ح.، "تکوین ژئوشیمیایی و متالوژنی سنگهای آذرین پتاسیم دار در کمربند آتشفشانی– نفوذی دهج – ساردوئیه، استان کرمان با نگرشی ویژه بر عناصر خاص"، پایان نامه دکتری، دانشگاه شهید باهنر کرمان، (1386) 401 ص.
[2] McInnes B. I. A., Evans N. J., Fu F. Q., Garwin S., "Application of thermo-chronology to hydrothermal ore deposits". In: Reviews in Mineralogy and geochemistry (2005) 58 468-498.
[3] Taghizadeh N., Mallakpour M. A., "Mineral distribution map of Iran", (Tehran) Geological Survey of Iran, 1:2,50,000, 2 sheets (1976).
[4] احمدی پور م.، "بررسی دینامیزم آتشفشان مساحیم"، پایان نامه دکتری، گروه زمین شناسی، دانشگاه شهید باهنر کرمان، (1372) 366 ص.
[5] سایت سازمان زمین شناسی و اکتشافات معدنی کشور، www.gsi.ir
[6] امینیان ع. ر.، "ژئوشیمی و پتروژنز منطقه آبدر"، پایان نامه کارشناسی ارشد، گروه زمین شناسی، دانشگاه شهید باهنر کرمان، (1388) 153 ص.
[7] Tangestani M. H., Mazhari M., Agar Moore F., "Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semiarid area, northern Shahr-e-Babak, SE Iran. " International Journal of Remote Sensing. V. 29, No. 10, (2008) 2833–2850.
[8] Honarmand M., Ranjbar H., Shahabpour J., "Application of Spectral Analysis in Mapping Hydrothermal Alteration of the Northwestern Part of the Kerman Cenozoic Magmatic Arc, Iran." Journal of Sciences, Islamic Republic of Iran 22(3) (2012) 221-238.
[9] Hassanzadeh J., "Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Keman Province)" [Ph.D. thesis]: Los Angeles, University of California, Los Angeles, (1993) 204.
[10] Ministry of Economy Geological Survey of Iran., (1972), geological map of Shahr-e-babak. 1:100000.
[11] سایت سازمان زمین شناسی ایالات متحده WWW.USGS.GOV
[12] سایت دانشنامه فضایی ایران www.isa.ir
[13] Remote Sensing Tutorial of NASA, www.rst.gsfc.nasa.gov.
[14] USGS, 2004a. Earth Observing 1, downloaded on May, 2011, from, url: http://eo1.usgs.gov/.
[15] Pearlman J. S., Barry P. S., Segal C. C., Shepanski J., Beiso D., Carman S. L., "Hyperion, a Space Borne Imaging Spectrometer", IEEE Transactions on Geosciences and Remote Sensing, vol.41, No.6 (2003) 1160-1173.
[16] Kruse F .A., Bordman J. W., Huntington J. F., "Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping" , IEEE Transactions of Geosciences and Remote Sensing, 41(6) (2003) 1388–1400.
[17] Hubbard B. E., Crowley J. K., Zimbelman D. R., "Comparative alteration mineral mapping using visible to shortwave infrared (0.4–2.4μm) Hyperion, ALI, and ASTER imagery", IEEE Trans. Geosci., Remote Sensing, v.41 (6) (2003) 1401-1410.
[18] Goodenough D. G., Dyk A., Niemann K. O., Pearlman J. S., Hao Chen Han T., Murdoch M., West C., "Processing Hyperion and ALI for forest classification", IEEE Trans. Geosci. Remote Sensing, v.41 (6) (2003) 1321- 1331.
[19] Kruse F. A., "Preliminary Results – Hyperspectral mapping of coral reef systems using EO-1 Hyperion, Buck Island, U.S. Virgin Islands", In proceedings 12th JPL Airborne Geoscience Workshop, Jet Propulsion Laboratory, Publication 04-6 (CD-ROM) (2003) 157 – 173.
[20] Datt B., McVicar T. R., Van Niel T. G., Jupp D. L. B. Pearlman J. S., "Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes" , IEEE Transactions on Geoscience and Remote Sensing, 41(6) (2003) 1246-1259.
[21] Sarup J ., "Comparision of QUAC and FLAASH Atmospheric Correction Modules on EO-1 Hyperion Data of Sanchi", international journal of advanced engineering sciences and technologies. Vol No. 4, Issue No. 1 (2011) 178 – 186.
[22] San B. T. Suzen M. L., "Evaluation of different atmospheric correction algorithms for eo-1 hyperion imagery; International Archives of the Photogrammetry", Remote Sensing and Spatial Information Science; Volume XXXVIII, Part 8 (2010) 392 – 398.
[23] Beiranvand Pour Am., Hashim M., "The Earth Observing-1 (EO-1) satellite data for geological mapping, southeastern segment of the Central Iranian Volcanic Belt, Iran", International Journal of the Physical Sciences Vol. 6(33) (2011)7638 – 7650.
[24] Coops N. C., Smith M. L., Martin M. E., Ollinger S. V., Held A. A., "Predicting Eucalypt biochemistry from HYPERION and HYMAP im- agery", in Proc. (2002).IGARSS, Toronto, ON, Canada.
[25] Staenz K., Neville R. A., Clavette S., Landry R., "White HP. Retrieval of Surface Reflectance from Hyperion Radiance Data", IEEE Geoscience and remote sensing letters,1 (2002) 1419-1421.
[26] Felde G. W., Anderson G. P., Adler-Golden S. M., Matthew N. W., Berk A., "Analysis of Hyperion data with the FLAASH atmospheric correction algorithm", Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS). Toulouse (2003) 90-92.
[27] Bindschadler R. Choi H., "Characterizing and Correcting Hyperion Detectors Using Ice-Sheet Images", IEEE Transactions on Geoscience and Remote Sensing, 41(6) (2003) 1189-1193.
[28] Ramsey E. III. A., Rangoonwala G., Nelson R., Martella K., "Generation and validation of characteristic spectra from EO-1 Hyperion image data for detecting the occurrence of thein vasive species, Chinese tallow", International Journal of Remote Sensing, vol. 26 (2004) 1611-1636.
[29] Khurshid K. S., Staenz K., Sun L., Neville R., White H. P., Bannari A., "Champagne, C.M. & Hitchcock, R., Preprocessing of EO-1 Hyperion data", Canadian Journal of Remote Sensing, 32(2) (2006) 84-97.
[30] Gersman R., Ben-Dor M., Beyth D., Avigad M., Abraha E., Kibreab A., "Mapping of hydrothermally altered rocks by the EO-1Hyperion sensor, northern Danakil Depression, Eritrea", International Journal of Remote Sensing, vol. 29 (2008) 3911-3936.
[31] Leverington D. W., "Discrimination of geological end members using Hyperion imagery: Preliminary results, Big Bend National Park, Texas", IEEE International Geosciences and Remote Sensing Symposium, Boston, Massachusetts (2008).
[32] Pearson K., "On Lines and Planes of Closest Fit to Systems of Points in Space", Philosophical Magazine 2 (6) (1901) 559–572.
[33] Jolliffe I. T., "Principal Component Analysis, Series: Springer Series in Statistics", 2nd ed., Springer, NY, XXIX, 487 28 illus. (2002) ISBN 978-0-387-95442-4
[34] Hastie T., Tibshirani R., Friedman J., "Elements of statistical learning", (1993) Springer Verlag.
[35] Anderson T.,"An Introduction to Moltivariate Statistical Analysis", 3rd ed.,Wiley, New York(2001). 721.
[36] Sabins F. F., "Remote sensing for mineral exploration”, Ore. Geol. Rev (1997), 14 157-183.
[37] Richards J. A., "An Introduction, Springer-Verlag, Berlin, Germany", Remote Sensing Digital Image Analysis (1999) 240.
[38] Ranjbar H., Honarmand M., Moezifar Z., "Application of Crosta technique for porphyry copper alteration mapping, using ETM+ data: A case study of Meiduk and SAR Cheshmeh areas, Kerman, Iran", Journal of Asian Earth Sciences, 24 (2004) 237–243.
[39] Karimpour M. H, Malekzadeh A., Haidarian M. R., "Ore deposite exploration, geology, geochemistry, satellite and geophysics models", Ferdowsi University of Mashhad (2008)
[40] Kruse F. A., Lefkoff A. B., Boardman J. B., Heidebrecht K. B., Shapiro A. T., Barloon P. J., Goetz A. F. H., "The Spectral Image Processing System (SIPS) - Interactive Visualization and Analysis of Imaging Spectrometer Data", Remote Sensing of Environment, Special issue on AVIRIS, (1993), v. 44 (1993) 145 - 163.
[41] Van der Meer F., De Jong S., " Imaging Spectrometery. Basic Principles and Prospective Applications", 4. Kluwer Achademic Publishers, Dordrecht/ Boston/ London, .( 2003)35 .
[42] Adams J. B., Smith M. O., "Spectral mixture modeling: A new analysis of rock and soil type at the Viking lander 1 site", Journal of geophysical research (1986) 91 8098_8112.
[43] ITT VIS, ENVI 4.5 User’s Guide. Software manual. ITT Visual Information Solution (ITT VIS), (2008) Boulder (co), USA.
[44] یعقوب پور ع. م.، "مبانی زمین شناسی اقتصادی"، مرکز نشر دانشگاهی، (1366) 266 ص.
[45] کریم پور م. ح.، "زمین شناسی اقتصادی کاربردی"، انتشارات جاوید، (1368) 404 ص.
[46] شهاب پور ج.، "زمین شناسی اقتصادی"، ویرایش اول، انتشارات دانشگاه شهید باهنر کرمان، (1390) 547 ص.
[47] علوی پناه س. ک.، "کاربرد سنجش از دور در علوم زمین"، موسسه انتشارات و چاپ دانشگاه تهران (1382) 289 ص.
[48] علوی پناه س. ک.، "اصول سنجش از دور نوین و تفسیر ماهواره ای و عکسهای هوایی"، مؤسسه انتشارات و چاپ دانشگاه تهران (1388) 372 ص.
CAPTCHA Image