کانی‌ شناسی، ژئوشیمی و پتروژنز پریدوتیت های گوشته ای مجموعه افیولیتی نهبندان، شرق ایران

نوع مقاله : علمی- پژوهشی

نویسندگان

1 دانشگاه شهید بهشتی

2 دانشگاه تحصیلات تکمیلی علوم پایه

چکیده

پریدوتیت­ های گوشته ­ای مجموعه افیولیتی نهبندان در مناطق کلاته شاهپوری، قدمگاه و ناسفنده ­کوه در پهنه جوش‌خورده سیستان قرار دارند. از لحاظ سنگ ­نگاری، این پریدوتیت ها از نوع هارزبورژیت و لرزولیت هستند. از دیدگاه کانی‌شناسی، هارزبورژیت­ ها از کانی­ های اصلی الیوین نوع فورستریت، ارتوپیروکسن نوع انستاتیت همراه با کانی فرعی کروم اسپینل نوع کروم بالا هستند. لرزولیت­ ها کانی‌های اصلی الیوین نوع فورستریت، ارتوپیروکسن نوع انستاتیت تا برونزیت، کلینوپیروکسن­ نوع دیوپسید و کانی فرعی کروم اسپینل از نوع آلومینیم ­متوسط تا بالا هستند. هارزبورژیت­ ها با درجه بالای تهی ­شدگی از نوع پریدوتیت­ های منطقه فرا‌فرورانشی بوده که حاصل از باقی‌مانده ذوب و درجات بالای ذوب‌بخشی (20 درصد) هستند. در مقابل لرزولیت­ ها با درجه پایین تهی ­شدگی از نوع پریدوتیت­ های میان‌اقیانوسی بوده و در اثر درجات پایین ذوب‌بخشی (5 درصد) احتمالاً در نتیجه باروری دوباره سنگ ­های هارزبورژیتی با مذاب­ های میان‌اقیانوسی و یا تله­ های باقی‌مانده در لیتوسفر هارزبورزیتی به وجود آمده ­اند. همین‌طور لرزولیت­ هایی وجود دارند که درجه ذوب‌بخشی 11 درصد را نشان می ­دهند و حالت حد‌واسط دارند؛ بنابراین، با توجه به بررسی‌های کانی ­شناختی، سنگ­ نگاری، ژئوشیمی و پتروژنز، پریدوتیت­ های مجموعه افیولیتی نهبندان را می‌توان به‌طورکلی در سه گروه هارزبورژیت ­های کروم بالا، لرزولیت­ های آلومینیم بالا و لرزولیت­ های مناطق گذار تقسیم‌بندی کرد که در اولویت بندی برای اکتشاف کانسارهای کرومیتی، مناطق فرورانش لیتوسفر اقیانوسی نئوتتیس به زیر پهنه سیستان در طی زمان کرتاسه بالایی تشکیل شده ­اند.

کلیدواژه‌ها


Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America. Bulletin, 103(8): 983–992.
Alavi Naini, M., Eftekharnezhad, J. and Aghanabati, A., 1990. Gological map of Zabol. Scale 1:250,000. Geological Survey of Iran.
Arai, S., 1994. Characterization of spinel peridotites by olivine-spine1 compositional relationships: review and interpretation. Chemical Geology, 113(3): 191–204.
Arai, S., Shimizu, Y., Ismail, S.A. and Ahmed, A.H., 2006. Low-T formation of high-Cr spinel with apparently primary chemical characteristics within podiform chromitite from Rayat, northeasternIraq. Mineralogical Magazine, 70(5): 49–508.
Berberian, M. and King, G.C.P., 1981. Towards a palaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265.
Büchl, A., Brügmann, G. and Batanova, V.G., 2004. Formation of podiform chromitite deposits: implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chemical Geology, 208(1): 217–232.
Coleman, R.G., 1977. Ophiolites: ancient oceanic lithosphere. Springer-Verlag, New York, 229 pp.
Delavari, M., Amini, S., Saccani, E. and Beccaluva, L., 2009. Geochemistry and Petrology of Mantle Peridotites from the Nehbandan OphioliticComplex, Eastern Iran. Journal of Applied Sciences, 9(15): 2671–2687.
Dick, H.J.B. and Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpian–type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54–76.
Droop, G.T.R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicatesand oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51(361): 431–435.
Godard, M., Jousselin, D. and Bodinier, J. L., 2000. Relationships between geochemistry and structure beneath a palaeospreading centre: a study of the mantle section in the Oman Ophiolite. Earth and Planetary Science Letters, 180(1): 133–148.
Hamzehpour, B., 1975. Geological map of the Chahar-farsakh, Scale 1:100,000. Geological Survay of Iran.
Hellebrand, E., Snow, J.E., Dick, H.J.B. and Hofmann, A.W., 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410(1): 677–681.
Hirose, K. and Kawamoto, T., 1995. Hydrous partial melting of lherzolite at 1Gpa: the effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133(3): 463– 473.
Hoffman, M.A. and Walker, D., 1978. Textural and chemical variations of olivine and chrome spinel in the East Donver ultramafic bodies, soyth-central Vermont. Geological Society of America. Bulletin, 89(5): 699–710.
Ishii, T., Robinson, P.T., Maekawa, H. and Fiske, R., 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc. Publication Dates of ODP Proceedings: Scientific Results at Texas A & M University, Texas, Report 27, 41 pp.
Johnson, K.T.M., Dick, H.J.B. and Shimizu, N., 1990. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research, 95(3): 2661–2678.
Kamenetsky, V.S., Crawford, A.J. and Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42(4): 655–671.
Kapsiotis, A., 2009. PGM and Chromite Mineralization Associated with the Petrogenesis of the Vourinos and Pindos Ophiolite Complexes, Northwestern Greece. Unpublished Ph.D. thesis, University of Patras, Patras, Greece, 891 pp.
Karipi, S., Tsikouras, B., Hatzipanagiotou, K. and Grammatikopoulos, T.A., 2007. Petrogenetic significance of spinelgroup minerals from the ultramafic rocks of the Iti and Kallidromon ophiolites (Central Greece). Lithos, 99(1): 136–149.
Kretz, R., 1983, Symbols for rock-forming minerals. American Mineralogist, 68(2): 277–279.
Le Bas, M.J., 2000. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. Journal of Petrology, 41(10): 1467–1470.
Masoudi, J. and Imamalipour, A., 2019. Application of geological methods for prospecting of podiform chromite deposits in the Khoy ophiolite zone, Northwestern Iran. Journal of Economic Geology, 11(2): 285–303. (in Persian with English abstract)
Matsumoto, L. and Arai, S., 2001. Petrology of dunite/harzburgite with decimeter-scale stratification in a drill core from the Trai-Misaka ultramafic complex southwestern Japan. Journal of Mineralogical and Petrological Sciences, 96(1): 19–28.
Monsef, I., Rahgoshay, M., Pirouz, M., Chiaradia, M., Michel Gregoire, M. and Ceuleneer, G., 2018. The Eastern Makran Ophiolite (SE Iran): evidence for a Late Cretaceous fore-arc oceanic crust. International Geology Review, 60(1):1–27
Nabavi, M.H., 1976. An introduction to geology of Iran. Geological Survey of Iran, Tehran, 109 pp. (in Persian)
Parkinson, I.J. and Pearce, J.A., 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577–1618.
Passchier, C.‌W. and Trouw, R.‌A., 1996. Microtectonics. Springer, Berlin, 289 pp.
Piccardo, G.B., Zanetti, A.O. and Müntener, 2007. Melt/peridotite interaction in the Southern Lanzo peridotite: Field, textural and geochemical evidence. Lithos, 94(1):181–209
Saccani, E., Delavari, M., Beccaluva, L. and Amini, S., 2010. Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos, 117(3): 209–228.
Shirdashtzadeh, N., Torabi, G. and Samadi, R., 2017. Petrography and mineral chemistry of metamorphosed mantle peridotites of Nain Ophiolite (Central Iran). Journal of Economic Geology, 9(1): 57–79. (in Persian with English abstract)
Stevens, R.E., 1944. Composition of some chromites of the western hemisphere. American Mineralogist, 29(2):1–64.
Streckeisen, A., 1979. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: recommendation and suggestion of the IUGS, subcommission on the systematic of Igneous Rock. Geology, 7(7): 331–335.
Tirrul, R., Bell, I.R., Griffis, R.J. and Camp, V.E., 1983. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin, 94(1): 134–150.
Tirrul, R., Johns, J.W., Willoughby, N.O., Camp, V.E., Griffis, R.J., Bell, I.R. and Meixner, H.M., 1989. Geological map of Nehbandan. Scale 1:100,000. Geological Survey of Iran.
Zarrinkoub, M.H., Pang, K.N., Chung, S.L., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y. and Lee, H.Y., 2012. Zircon U–Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran. Lithos, 154(4): 392–405.
Zhou, M.F., Sun, M., Keays, R.R. and Kerrich, R.W., 1998. Controls of platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4): 677– 688.
CAPTCHA Image