Arima, M. and Edgar, A.D., 1981. Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin. Contributions to Mineralogy and Petrology, 77(3): 288–295.
https://doi.org/10.1007/BF00373544
Barriére, M. and Cotton, J., 1979. Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contribution to Mineralolgy and Petrology, 70(2): 183–192.
https://doi.org/10.1007/BF00374447
Boomeri, M., Nakashima, K. and Lentz, D.R., 2009. The Miduk porphyry Cu deposit, Kerman, Iran: A geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration, 103(1): 17–29.
https://doi.org/10.1016/j.gexplo.2009.05.003
Boomeri, M., Biabangard, H. and Zeinadini, Z., 2019. Investigation of petrography, mineralogy and alteration of northern part of the Chahfiruzeh porphyry copper deposit, northwest of Shar-e-Babak, Kerman. Journal of Economic Geology, 11(1): 57-80. (in Persian with English abstract) h
ttps://doi.org/ 10.22067/ECONG.V11I1.63353
Bowman, J.R., Parry, W.T., Kropp, W.P. and Kruer, S.A., 1987. Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah. Economic Geology, 82(2): 395–428.
https://doi.org/10.2113/gsecongeo.82.2.395
Dorais, M.J., Lira, R., Chen, Y. and Tingey, D., 1997. Origin of biotite-apatite-rich enclaves, Achala batholith, Argentina. Contribution to Mineralolgy and Petrology, 130(1): 31–46.
https://doi.org/10.1007/s004100050347
Ekstrom, T.K., 1972. The distribution of fluorine among some coexisting minerals. Contribution to Mineralolgy and Petrology, 34(3): 192–200.
https://doi.org/10.1007/BF00373291
Foley, A., 2004. Geological Map of 1: 250000 Gonabad. Geological Survey of Iran.
Forbes, W.C. and Flower, M.F.J. 1974. Phase relations of titan-phlogopite, K
2Mg
4TiAl
2Si
6O
20(OH)
4: A refractory phase in the upper mantle. Earth and Planetary Science Letters, 22(1): 60–66. .
https://doi.org/10.1016/0012-821X(74)90064-8
Ghaemi, F., 2010. Geological Map 1: 100,000 Nodeh. Geological Survey of Iran. (in Persian)
Guidotti, C.V., Cheney, J.T. and Guggenheim, S., 1977. Distribution of titanium between coexisting muscovite and biotite in pelitic schists from northwestern Maine. American Mineralogist, 62(5–6): 438–448.
http://www.minsocam.org/ammin/AM62/AM62_438.pdf
Guidotti, C.V., Cheney, J.T. and Henry, D.J., 1988. Compositional variation of biotite as a function of metamorphic reactions and mineral assemblage in the pelitic schists of western Maine. American Journal of Science, 288-A: 270–292.
https://doi.org/10.1007/BF00521645
Guidotti, C.V. and Sassi, F.P., 2002. Constraints on studies of metamorphic K-Na white micas. In: A. Mottana, F.P. Sassi, J.B. Thompson Jr. and S. Guggenheim (Editors), Micas: Crystal Chemistry and Metamorphic Petrology, Mineralogical society of America, USA, pp. 413–448.
https://doi: 10.2138/rmg.2002.46.09
Gunow, A.J., Ludington, S. and Munoz, J.L., 1980. Fluorine in micas from the Henderson molybdenite deposits, Colorado. Economic Geology, 75(8): 1127–1137.
https://doi:10.2113/gsecongeo.75.8.1127
Heidari, M., Zarasvandi, A., Rezaei, M., Raith, J. and Adel Saki, A., 2019. Physicochemical Attributes of Parental Magma in Collisional Porphyry Copper Systems; Using Biotite Chemistry, Case Study: Chahfiruzeh Porphyry Copper Deposit. Journal of Economic Geology, 10(2): 561–586. (in Persian with English abstract)
https://doi.org/10.22067/econg.v10i2.65652
Henry, D.J., Guidotti, C.V. and Thomson, J.A., 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2–3): 316–328.
https://doi.org/10.2138/am.2005.1498
Honma, H., 1974. Chemical features of biotites from metamorphic and granitic rocks of the Yanai district in the Ryoke belt, Japan. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 69(11): 390–402.
https://doi.org/10.2465/ganko1941.69.390
Kanisawa, S., 1972. Coexisting biotites and hornblendes from some granitic rocks in southern Kitakami Mountains, Japan. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 67(10): 332–344.
https://doi.org/10.2465/ganko1941.67.332
Kwak, T.A.P., 1968. Ti in biotite and muscovite as an indication of metamorphic grade in almandine amphibolite facies rocks from Sudbury, Ontario. Geochimica et Cosmochimica Acta, 32(11): 1222–1229.
https://doi.org/10.1016/0016-7037(68)90124-5
Lanier, G., Raab, W.J., Folsom, R.B. and Cone, S., 1978. Alteration of equigranular monzonite, Bingham Mining District, Utah. Economic Geology, 73(7): 1270–1286.
https://doi.org/10.2113/gsecongeo.73.7.1270
Lentz, D.R., 1994. Exchange reactions in hydrothermally altered rocks: examples from biotite-bearing assemblages. In: D.R. Lentz (Editor), Alteration and alteration processes associated with ore-forming systems. Geological Association of Canada, Canada, pp. 69–99.
https://doi.org/10.1007/3-540-27946-6_128
Luhar, J.F., Carmichael, I.S.E. and Varekamp, J.C., 1984. The 1982 Eruptions of El Chichon volcano, Chiapas, Mexico: Mineralogy and Petrology of the anhydrite-bearing Pumices. Journal of volcanology and geothermal research, 23 (1–2): 69–108.
https://doi.org/10.1016/0377-0273(84)90057-X
Munoz, J.L., 1992. Calculation of HF and HCl
Munoz, J.L. and Swenson, A., 1981. Chloride–hydroxyl exchange in biotite and estimation of relative HCl/HF activities in hydrothermal fluids. Economic Geology, 76(8): 2212–2221.
https://doi.org/10.2113/gsecongeo.76.8.2212
Nabavi, M.H., 1976. An introduction to the geology of Iran. Geological Survey of Iran, Tehran. 110 pp. (in Persian)
Nachit, H., Ibhi, A., Abia, El.-H. and Ohoud, M.B., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337(16): 1415–1420.
https://doi.org/10.1016/j.crte.2005.09.002
Panigrahi, M.K., Naik, R.K., Pandit, D. and Misra, K.C., 2008. Reconstructing physicochemical parameters of hydrothermal mineralization of copper at the Malanjkhand deposit, India, from mineral chemistry of biotite, chlorite and epidote. Geochemical Journal, 42(5): 443–460.
https://doi.org/10.2343/geochemj.42.44
Parry, W.T., Ballantyne, G.H. and Wilson, J.C., 1978. Chemistry of biotite and apatite from a vesicular quartz latite porphyry plug at Bingham, Utah. Economic Geology, 73(7): 1308–1314.
https://doi.org/10.2113/gsecongeo.73.7.1308
Patiño Douce, A.E., 1993. Titanium substitution in biotite: an empirical model with applications to thermometry, O
2 and H
2O barometries, and consequences form biotite stability. Chemical Geology, 108(1–4): 133–162.
https://doi.org/10.1016/0009-2541(93)90321-9
Pourmohammad, A.S., Ahmadi Khalaji, A., Homam, M., Tahmasebi, Z. and Ebrahimi, M., 2020. Geochemistry, petrogenesis and tectonic setting of Geysour granitoid, East Gonabad. Scientific Quarterly journal, Geosciences, Geological Survey of Iran, 29(115): 137–150. (in Persian with English abstract)
http://dx.doi.org/10.22071/gsj.2019.148243.1533
Rieder, M., Cavazzini, G., Yakonov, Y.D., Frank-Kanetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1998. Nomenclature of the micas. The Canadian Mineralogist, 36(3): 905–912.
https://doi.org/10.1346/CCMN.1998.0460513
Rimsaite, J., 1970. Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of the hydroxyl group. Contribotion to Mineralogy and Petrology, 25(3): 225–240.
https://doi.org/10.1007/BF00371132
Selby, D. and Nesbitt, B.E., 2000. Chemical composition of biotite from the Casino Porphyry Cu-Au-Mo mineralization, Yukon, Canada: Evaluation of magmatic and hydrothermal fluid chemistry. Chemical Geology, 171(1–2): 77–93.
https://doi.org/10.1016/S0009-2541(00)00248-5
Shabani, A.A.T. and Lalonde, A.E., 2003. Composition of Biotite from Granitic rocks of the Canadian Appalachian Orogen: a potential tectonomagmatic indicator. The Canadian Mineralogist, 41(6): 1381–1396.
http://dx.doi.org/10.2113/gscanmin.41.6.1381
Tronnes, R.G., Edgar, A.D. and Arima, M., 1985. A high pressure-high temperature study of TiO2 solubility in Mg-rich phlogopite: Implications to phlogopite chemistry. Geochimica et Cosmochimica Acta, 49(11): 2323–2329.
https://doi.org/10.1016/0016-7037(85)90232-7
Tischendorf, G., Gottesmann, B.F. Orster, H.J. and Trumbull, R.B., 1997. On Li-bearing micas: estimating Li from electron microprobe analyses and improved diagram for graphical representation. Mineralogical Magazine, 61(409): 809–834.
https://doi.org/10.1180/minmag.1997.061.409.05
Webster, J.D., 1997. Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for oremetal transport. Geochimica et Cosmochimica Acta, 61(5): 1017–1029.
https://doi.org/10.1016/S0016-7037(96)00395-X
Yavuz, F., 2003a. Evaluating micas in petrologic and metallogenic aspect: I—definitions and structure of the computer program Mica
+. Computational Geosciences, 29(10): 1203–1213.
https://doi.org/10.1016/S0098-3004(03)00142-0
Zhang, W., Lentz, D.R., Thorne, K.G. and McFarlane, C., 2016. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W–Mo–Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems. Ore Geology Reviews, 77(77): 82–96.
https://doi.org/10.1016/j.oregeorev.2016.02.004
ارسال نظر در مورد این مقاله