گرانیتوئیدهای پهنه سنندج-سیرجان متعلق به سری ایلمینیت (نوع S)، همزاد با کوه‌ زایی سیمیرین (178-160 میلیون سال پیش): بررسی علت عدم تشکیل کانی‌ سازی قلع پورفیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پژوهشی اکتشاف ذخایر معدنی شرق ایران، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه زمین‌‌شناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان، ایران

3 بخش زمین‌شناسی اقتصادی، سازمان زمین‌شناسی سوئد، اوپسالا، سوئد

چکیده

در این پژوهش، بر اساس داده‌های زمین‌شناسی، زمین‌فیزیکی، زمین‌شیمیایی ایزوتوپی موجود برای گرانیتوئیدهای ژوراسیک (بازه 178-160 میلیون سال پیش) در پهنه سنندج-‌سیرجان1، به بررسی خاستگاه و پهنه تکتونوماگمایی این گرانیتوئیدها و امکان کانی‌سازی قلع در ارتباط با آنها پرداخته می‌شود. ویژگی‌های زمین‌شناسی، زمین‌فیزیکی و زمین‌شیمیایی گرانیتوئیدهای پهنه سنندج-سیرجان (مانند نبود کمان آتشفشانی و سنگ‌های آتشفشانی، ضخیم‌شدگی پوسته قاره‌ای (52 تا 56 کیلومتر) و تشکیل توده‌های گرانیتوئیدی با ابعاد بزرگ (باتولیت) در عمق بیشتر از 4 کیلومتر، پیدایش سنگ‌های دگرگونی و رویداد دگرگونی ناحیه‌ای در حد رخساره شیست سبز (و آمفیبولیت) در پی فرایندهای کوه‌زایی سیمیرین، مقدار (Eu/Eu)N کم (شرایط احیایی)، پذیرفتاری مغناطیسی کمتر از 5-10 x100 (سری ایلمینیت)، εNdiمنفی و (87Sr/86Sr)i بیشتر از 707/0) برخلاف پژوهش‌های پیشین نشان می‌دهند که این گرانیتوئیدها از گرانیتوئیدهای نوع S پدیدآمده در پی ذوب پوسته قاره‌ای در پهنه برخوردی هستند. از این‌رو، وقوع کانی‌سازی قلع در ارتباط با پیدایش آنها محتمل است؛ اما شواهد بسیاری بیانگر نبود کانی‌سازی قلع توسط ماگمای سازنده این گرانیتوئیدهاست که عبارتند از نبود محلول‌های گرمابی و در نتیجه توانایی کانی‌سازی (با توجه به نبود کانی‌های دگرسانی در تصاویر ماهواره ASTER)، فراوانی اندک عنصرهای قلع، مس، سرب و روی در این گرانیتوئیدها و رسوب‌های رودخانه‌ای وابسته به آنها، مقدار (Eu/Eu)N بیشتر از 2/0، Rb/Sr کمتر از 3، Y کم (ppm 10-75)، Ba بیشتر از ppm 200 و شباهت‌های زمین‌شناسی، زمین‌فیزیکی و زمین‌شیمیایی به گرانیتوئیدهای نوع S (سری ایلمینیت) نابارور در بلوک لوت (در مناطق نجم‌آباد، سرخ‌کوه تا شاه‌کوه) که در پهنه برخورد قاره‌ای و در طی کوه‌زایی سیمیرین پدید آمده‌اند.

کلیدواژه‌ها


Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94: 401–419. https://doi.org/10.1007/s00531-005-0481-4
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B. and Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5-6): 692–725. https://doi.org/10.1017/S001675681100046X
Ahadnejad, V., Valizadeh, M., Deevsalar, R. and Rezaei-kahkhaei, M., 2011. Age and geotectonic position of the Malayer granitoids: Implication for plutonism in the Sanandaj-Sirjan Zone, W Iran. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 261(1): 61–75. https://doi.org/10.1127/0077-7749/2011/0149
Ajirlu, M.S., Moazzen, M. and Hajialioghli, R., 2016. Tectonic evolution of the Zagros Orogen in the realm of the Neotethys between the Central Iran and Arabian Plates: An ophiolite perspective. Central European Geology, 59(1–4): 1–27. https://doi.org/10.1556/24.59.2016.001
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3–4): 211–238. https://doi.org/10.1016/0040-1951(94)90030-2
Azizi, H., Nouri, F., Stern, R.J., Azizi, M., Lucci, F., Asahara, Y., Zarinkoub, M.H. and Chung, S.L., 2020. New evidence for Jurassic continental rifting in the northern Sanandaj Sirjan Zone, western Iran: the Ghalaylan seamount, southwest Ghorveh. International Geology Review, 62(13–14): 1635–1657. https://doi.org/10.1080/00206814.2018.1535913
Bayati, M., Esmaeily, D., Maghdour-mashhour, R., Li, X. and Stern, R.J., 2017. Geochemistry and petrogenesis of Kolah-Ghazi granitoids of Iran: Insights into the Jurassic Sanandaj-Sirjan magmatic arc. Chemie der Erde- Geochemistry, 77(2): 281–302. https://doi.org/10.1016/j.chemer.2017.02.003
Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265. https://doi.org/10.1139/e81-019
Boynton, W., 1984. Cosmochemistry of rare earth elements: meteorite studies. In: P. Henderson (Editor), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Chappell, B.W. and White, A.J.R., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
Chappell, B.W., White, A.J.R., Williams, I.S. and Wyborn, D., 2004. Low- and high-temperature granites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1–2): 125–140. https://doi.org/10.1017/s0263593300000973
Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M. and Iizuka, Y., 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–163: 70–87. https://doi.org/10.1016/j.lithos.2013.01.006
Clemens, J.D. and Stevens, G., 2012. What controls chemical variation in granitic magmas? Lithos, 134–135: 317–329. https://doi.org/10.1016/j.lithos.2012.01.001
Clemens, J.D., Stevens, G. and Farina, F., 2011. The enigmatic sources of I-type granites: The peritectic connexion. Lithos, 126(3–4): 174–181. https://doi.org/10.1016/j.lithos.2011.07.004
Daneshvar, N., Maanijou, M., Azizi, H. and Asahara, Y., 2019. Petrogenesis and geodynamic implications of an Ediacaran (550 Ma) granite complex (metagranites), southwestern Saqqez, northwest Iran. Journal of Geodynamics, 132: 101669. https://doi.org/10.1016/j.jog.2019.101669
Darbyshire, D.P.F. and Shepherd, T.J., 1994. Nd and Sr isotope constraints on the origin of the Cornubian batholith, SW England. Journal of Geological Society, 151(5): 795–802. https://doi.org/10.1144/gsjgs.151.5.0795
Drake, M.J., 1975. The oxidation state of europium as an indicator of oxygen fugacity. Geochimica et Cosmochimica Acta, 39(1): 55–64. https://doi.org/10.1016/0016-7037(75)90184-2
Ellwood, B.B. and Wenner, D.B., 1981. Correlation of magnetitic susceptibility with18O/16O data in late orogenic granites of the southern Appalachian Piedmont. Earth and Planetary Science Letters, 54(2): 200–202. https://doi.org/10.1016/0012-821X(81)90003-0
Esmaeily, D., Nedelec, A., Valizadeh, M., Moore, F. and Cotton, J., 2005. Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences, 25(6): 961–980. https://doi.org/10.1016/j.jseaes.2004.09.003
Esna-Ashari, A., Tiepolo, M., Valizadeh, M., Hassanzadeh, J. and Sepahi, A., 2012. Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan Zone, Iran. Journal of Asian Earth Sciences, 43(1): 11–22. https://doi.org/10.1016/j.jseaes.2011.09.001
Fergusson, C.L., Nutman, A.P., Mohajjel, M. and Bennett, V.C., 2016. The Sanandaj – Sirjan Zone in the Neo-Tethyan suture, western Iran: Zircon U – Pb evidence of late Palaeozoic rifting of northern Gondwana and mid-Jurassic oogenesis. Gondwana Research, 40: 43–57. https://doi.org/10.1016/j.gr.2016.08.006
Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6): 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003
Gill, R., 2010. Igneous Rocks and Processes: A Practical Guide. Wiley-Blackwell, Chichester, 438 pp. Retrieved January 01, 2021 from https://b-ok.asia/book/3095543/af00d1
Golestani, M., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Hidarian Shahri, M.R., 2018. Geochemistry, U-Pb geochronology and Sr-Nd isotopes of the Neogene igneous rocks, at the Iju porphyry copper deposit, NW Shahr-e-Babak, Iran. Ore Geology Reviews, 93: 290–307. https://doi.org/10.1016/j.oregeorev.2018.01.001
Gomes, M.E.P. and Neiva, A.M.R., 2000. Chemical zoning of muscovite from the Ervedosa granite, northern Portugal. Mineralogical Magazine, 64(2): 347–358. https://doi.org/10.1180/002646100549247
Govett, G.J.S. and Atherden, P.R., 1988. Applications of rock geochemistry to productive plutons and volcanic sequences. Journal of Geochemical Exploration, 30(1–3): 223–242. https://doi.org/10.1016/0375-6742(88)90062-3
Grebennikov, A.V., 2014. A-type granites and related rocks: Petrogenesis and classification. Russian Geology and Geophysics, 55(11): 1353–1366. https://doi.org/10.1016/j.rgg.2014.10.011
Hassanzadeh, J., Stockli, D.F., Horton, B.K., Axen, G.J., Stockli, L.D., Grove, M., Schmitt, A.K. and Walker, J.D., 2008. U-Pb zircon geochronology of late Neoproterozoic-Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics, 451(1–4): 71–96. https://doi.org/10.1016/j.tecto.2007.11.062
Healy, B., Collins, W.J., and Richards, S.W., 2004. A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example. Lithos, 78(1–2): 197–216. https://doi.org/10.1016/j.lithos.2004.04.047
Heinrich, C.A., 1990. The chemistry of hydrothermal tin (-tungsten) ore deposition. Economic Geology, 85(3): 457–481. https://doi.org/10.2113/gsecongeo.85.3.457
Hemmati, O., Tabatabaei Manesh, S.M. and Nadimi, A.R., 2018. Deformation Mechanisms of Darreh Sary Metapelites, Sanandaj‒Sirjan Zone, Iran. Geotectonics, 52: 281–296. https://doi.org/10.1134/S0016852118020024
Hu, P.C., Zhu, W.G., Zhong, H., Zhang, R.Q., Zhao, X.Y. and Mao, W., 2020. Late Cretaceous granitic magmatism and Sn mineralization in the giant Yinyan porphyry tin deposit, South China: constraints from zircon and cassiterite U–Pb and molybdenite Re–Os geochronology. Mineralium Deposita, 56: 743–765. https://doi.org/10.1007/s00126-020-00997-3
Ishihara, S., 1977. The Magnetite-series and Ilmenite-series Granitic Rocks. Mining Geology, 27(145): 293–305. https://doi.org/10.11456/shigenchishitsu1951.27.293
Jamshidibadr, M., Collins, A.S., Masoudi, F., Cox, G. and Mohajjel, M., 2013. The U-Pb age, geochemistry and tectonic significance of granitoids in the Soursat Complex, Northwest Iran. Turkish Journal of Earth Sciences, 22(1): 1–31. https://doi.org/10.3906/yer-1001-37
Jiménez-Munt, I., Fernàndez, M., Saura, E., Vergés, J. and Garcia- Castellanos, D., 2012. 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia–Eurasia collision (Iran). Geophysical Journal International, 190(3): 1311–1324. https://doi.org/10.1111/j.1365-246X.2012.05580.x
Karimpour, M.H. and Bowes, W.W., 1983. Application of Trace Elements and Isotopes for Discriminating between Porphyry Molybdenum, Copper, and Tin Systems and the Implications for Predicting the Grade. Global Tectonics and Metallogeny, 2(1–2): 29–36. https://doi.org/10.1127/gtm/2/1983/29
Kazemi, K., Kananian, A., Xiao, Y. and Sarjoughian, F., 2019. Petrogenesis of Middle-Eocene granitoids and their Mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc (Iran): Evidence for interaction between felsic and ma fi c magmas. Geoscience Frontiers, 10(2): 705–723. https://doi.org/10.1016/j.gsf.2018.04.006
Khalaji, A.A., Esmaeily, D. and Valizadeh, M. V., 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 29(5-6): 859–877. https://doi.org/10.1016/j.jseaes.2006.06.005
Le Garzic, E., Vergés, J., Sapin, F., Saura, E., Meresse, F. and Ringenbach, J.C., 2019. Evolution of the NW Zagros Fold-and-Thrust Belt in Kurdistan Region of Iraq from balanced and restored crustal-scale sections and forward modeling. Journal of Structural Geology, 124: 51–69. https://doi.org/10.1016/j.jsg.2019.04.006
Lehmann, B., 1982. Metallogeny of tin; magmatic differentiation versus geochemical heritage. Economic Geology, 77(1): 50–59. https://doi.org/10.2113/gsecongeo.77.1.50
Lehmann, B., 1987. Tin granites, geochemical heritage, magmatic differentiation. Geologische Rundschau, 76: 177–185. https://doi.org/10.1007/BF01820581
Lehmann, B., 1990. Metallogeny of Tin. Springer, Berlin, Heidelberg, 212 pp. https://doi.org/10.1007/BFb0010922
Li, H., Palinkaš, L.A., Watanabe, K. and Xi, X.S., 2018. Petrogenesis of Jurassic A-type granites associated with Cu-Mo and W-Sn deposits in the central Nanling region, South China: Relation to mantle upwelling and intra-continental extension. Ore Geology Reviews, 92: 449–462. https://doi.org/10.1016/j.oregeorev.2017.11.029
Liu, C.S., Ling, H.F., Xiong, X.L., Shen, W.Z., Wang, D.Z., Huang, X.L. and Wang, R.C., 1999. An F-rich, Sn-bearing Volcanic-intrusive complex in Yanbei, South China. Economic Geology, 94(3): 325–341. https://doi.org/10.2113/gsecongeo.94.3.325
Mahmoudi, S., Corfu, F., Masoudi, F., Mehrabi, B. and Mohajjel, M., 2011. U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran. Journal of Asian Earth Sciences, 41(3): 238–249. https://doi.org/10.1016/j.jseaes.2011.03.006
McCulloch, M.T. and Chappell, B.W., 1982. Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Science Letters, 58: 51–64. https://doi.org/10.1016/0012-821X(82)90102-9
Mehdipour Ghazi, J. and Moazzen, M., 2015. Geodynamic evolution of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran. Turkish Journal of Earth Sciences, 24(5): 513–528. https://doi.org/10.3906/yer-1404-12
Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
Mohajjel, M. and Fergusson, C.L., 2014. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56(3): 263–287. https://doi.org/10.1080/00206814.2013.853919
Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous – Tertiary convergence and continental collision, Sanandaj – Sirjan Zone, western Iran. Journal of Asian Earth Sciences, 21(4): 397–412. https://doi.org/10.1016/S1367-9120(02)00035-4
Monfaredi, B., Hauzenberger, C., Neubauer, F., Schulz, B., Genser, J., Shakerardakani, F. and Halama, R., 2020. Deciphering the Jurassic–Cretaceous evolution of the Hamadan metamorphic complex during Neotethys subduction, western Iran. International Journal of Earth Sciences, 109: 2135–2168. https://doi.org/10.1007/s00531-020-01893-x
Moradi Noghondar, M., Karimpour, M., Farmer, G. and Stern, C., 2011. Sr-Nd isotopic characteristic, U-Pb zircon geochronology, and petrogenesis of Najmabad Granodiorite batholith, Eastern Iran. Journal of Economic Geology, 3(5): 27–145. https://doi.org/10.22067/econg.v3i2.11436
Myint, A.Z., Zaw, K., Swe, Y.M., Yonezu, K., Cai, Y., Manaka, T. and Watanabe, K., 2017. Geochemistry and geochronology of granites hosting the Mawchi Sn–W deposit, Myanmar: implications for tectonic setting and emplacement. Geological Society, London, Memoirs, 48: 385-400. https://doi.org/10.1144/M48.17
Neiva, A.M.R., 1984. Geochemistry of tin-bearing granitic rocks. Chemical Geology, 43(3-4): 241–256. https://doi.org/10.1016/0009-2541(84)90052-4
Neiva, A.M.R., 2002. Portuguese granites associated with Sn-W and Au mineralizations. Bulletin of the Geological Society of Finland, 74: 79–101. https://doi.org/10.17741/bgsf/74.1-2.003
Pearce, J., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C.J. Hawkesworth and M.J. Norry (Editors), Continental basalts and mantle xenoliths. Shiva, Nantwich, pp. 230–249. Retrieved January 01, 2021 from http://orca.cf.ac.uk/id/eprint/8626
Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
Pitcher, W., 1983. Granite type and tectonic environment. In: K. Hsu (Editor), Mountain Building Processes. Academic Press, London, pp. 19–40. Retrieved January 01, 2021 from https://www.csus.edu/indiv/c/cornwell/earth/mountains.pdf
Raeisi, D., Mirnejad, H. and Sheibi, M., 2019. Emplacement mechanism of the Tafresh granitoids, central part of the Urumieh–Dokhtar Magmatic Arc, Iran: evidence from magnetic fabrics. Geological Magazine, 156(9): 1510–1526. https://doi.org/10.1017/S0016756818000766
Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70: 323–345. https://doi.org/10.1016/j.oregeorev.2014.11.009
Ricou, L.E., 1994. Tethys reconstructed: plates continental fragments and their boundaries since 260 Ma from Central America to South-eastern Asia. Geodinamica Acta, 7(4): 169–218. https://doi.org/10.1080/09853111.1994.11105266
Safarzadeh, E., Masoudi, F., Hassanzadeh, J. and Pourmoafi, S.M., 2016. The presence of Precambrian basement in Gole Gohar of Sirjan (south of Iran). Iranian Journal of Petrology, 7(26): 153–170. https://doi.org/10.22108/ijp.2016.20847
Sepahi, A.A., Salami, S., Lentz, D., McFarlane, C. and Maanijou, M., 2018. Petrography, geochemistry, and U–Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj–Sirjan zone, Zagros orogen (Iran). International Journal of Earth Sciences, 107: 1059–1096. https://doi.org/10.1007/s00531-017-1515-4
Shabanian, N., Reza, A., Dong, Y. and Liu, X., 2018. U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites, Sanandaj-Sirjan Zone of western Iran. Precambrian Research, 306: 41–60. https://doi.org/10.1016/j.precamres.2017.12.037
Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A.A., Shang, C.K. and Abedini, M.V., 2010. Geochemistry and U – Pb zircon geochronology of the Alvand plutonic complex in Sanandaj – Sirjan Zone (Iran): New evidence for Jurassic magmatism. Journal of Asian Earth Sciences, 39(6): 668–683. https://doi.org/10.1016/j.jseaes.2010.04.014
Shakerardakani, F., Neubauer, F., Genser, J., Masoudi, F. and Mehrabi, B., 2015. Tectonic history of the central Sanandaj-Sirjan zone, Iran: Potentially Permian to Mesozoic polymetamorphism and implications for tectonics of the Sanandaj-Sirjan zone. EGU General Assembly Conference Abstracts, Vienna Austria.
Sheikholeslami, M.R., 2015. Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, Sanandaj–Sirjan Zone, Iran. Journal of Asian Earth Sciences, 106: 130–149. https://doi.org/10.1016/j.jseaes.2015.03.007
Simons, B., Shail, R.K. and Andersen, J.C.Ø., 2016. The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England. Lithos, 260: 76–94. https://doi.org/10.1016/j.lithos.2016.05.010
Solomon, M., Groves, D. and Jaques, A., 1994. The Geology and Origin of Australia’s Mineral Deposits. Oxford University Press, New York, 951 pp.
Stampfli, G.M. and Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1–2): 17–33. https://doi.org/10.1016/S0012-821X(01)00588-X
Tahmasbi, Z., Castro, A., Khalili, M., Khalaji, A.A. and De, J., 2010. Petrologic and geochemical constraints on the origin of Astaneh pluton, Zagros. Journal of Asian Earth Sciences, 39(3): 81–96. https://doi.org/10.1016/j.jseaes.2010.03.001
Takahashi, M., Aramaki, S. and Ishihara, S., 1980. Magnetite-Series/Ilmenite Series vs. I-type/S-type granitoids, Granitic Magmatism and related mineralization. Mining Geology, Special Issue, 8: 13–28.
Tarkian, M., Lotfi, M. and Bauman, A., 1983.Tectonic, magmatism and the formation of mineral deposit in central Lut, East of Iran. Geological Survey of Iran, Tehran, Report 51, 26 pp.
Teknik, V. and Ghods, A., 2017. Depth of magnetic basement in Iran based on fractal spectral analysis of aeromagnetic data. Geophysical Journal International, 209(3): 1878–1891. https://doi.org/10.1093/gji/ggx132
Xu, B., Jiang, S.Y., Luo, L., Zhao, K.D. and Ma, L., 2017. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes. Mineralium Deposita, 52: 337–360. https://doi.org/10.1007/s00126-016-0659-7
Yang, T.N., Chen, J.L., Liang, M.J., Xin, D., Aghazadeh, M., Hou, Z.Q. and Zhang, H.R., 2018. Two plutonic complexes of the Sanandaj-Sirjan magmatic-metamorphic belt record Jurassic to Early Cretaceous subduction of an old Neotethys beneath the Iran microplate. Gondwana Research, 62: 246–268. https://doi.org/10.1016/j.gr.2018.03.016
Zarasvandi, A., Rezaei, M., Raith, J.G. and Lentz, D.R., 2020. Why are there no Cu-porphyry deposits in Jurassic Sanandaj-Sirjan zone intrusions of Iran? International Geology Review, 1–15. https://doi.org/10.1080/00206814.2020.1864792
Zarasvandi, A., Rezaei, M., Tashi, M., Fereydouni, Z., and Saed, M., 2019. Comparison of geochemistry and porphyry copper mineralization efficiency in granitoids of the Sanandaj-Sirjan and Urumieh-Dokhtar zones; using rare earth elements geochemistry. Journal of Economic Geology, 11(1): 1–32. https://doi.org/10.22067/econg.v11i1.64476
Zhang, L., Zhang, R., Hu, Y., Liang, J., Ouyang, Z., He, J., Chen, Y., Guo, J. and Sun, W., 2017. The formation of the Late Cretaceous Xishan Sn–W deposit, South China: Geochronological and geochemical perspectives. Lithos, 290–291: 253–268. https://doi.org/10.1016/j.lithos.2017.08.013
Zhang, Z., Xiao, W., Ji, W., Majidifard, M.R., Rezaeian, M., Talebian, M., Xiang, D., Chen, L., Wan, B., Ao, S. and Esmaeili, R., 2018. Geochemistry, zircon U-Pb and Hf isotope for granitoids, NW Sanandaj-Sirjan zone, Iran: Implications for Mesozoic-Cenozoic episodic magmatism during Neo-Tethyan lithospheric subduction. Gondwana Research, 62: 227–245. https://doi.org/10.1016/j.gr.2018.04.002
Zheng, W., Mao, J., Zhao, C., Ouyang, H. and Wang, X.-Y., 2016. Re–Os Geochronology of Molybdenite from Yinyan Porphyry Sn Deposit in South China. Resource Geology, 66(1): 63–70. https://doi.org/10.1111/rge.12087
Zhengshu, Z., Jinchu, Z. and Keqin, X., 1989. Geology, geochemistry and genesis of Yinyan porphyry tin deposit. Chinese Journal of Geochemistry, 8: 374–384. https://doi.org/10.1007/BF02837841
CAPTCHA Image