تلفیق داده های زمین شناسی، کانی سازی، ژئوشیمی و مغناطیس سنجی در کانسار آهن آپاتیت دار ده زمان، استان خراسان رضوی

نوع مقاله : علمی- پژوهشی

نویسندگان

فردوسی مشهد

چکیده

کانسار آهن ده زمان در جنوب‌غربی استان خراسان رضوی و در شمال‌شرقی زون زمین‌ساختی کاشمر- کرمان واقع شده است. زمین شناسی منطقه شامل واحدهای رسوبی- آتشفشانی دگرگون‌شده و توده های نفوذی گرانیتی به سن پرکامبرین بالایی- کامبرین زیرین است. کانه‌زایی آهن آپاتیت دار به شکل رگه ‌های مگنتیت± اسپکیولاریت در بخش مرکزی و مگنتیت- اسپکیولاریت در بخش شرقی در سنگ میزبان متاریولیت تا متاریوداسیت تشکیل شده است. کانی های اولیه شامل مگنتیت، اسپکیولاریت، آپاتیت و جزیی کالکوپیریت و کانی‌های ثانویه مالاکیت و هماتیت است. کلریتی شدن، کربناتی شدن، سیلیسی شدن و بیوتیتی شدن مهمترین آلتراسیون های همراه با رگه ها هستند. عیار آهن بین 56 تا 67 درصد و مقدار FeO بین 29/0 تا 13/20 درصد متغیر است. مقدار FeO رابطه معکوس با اسپکیولاریت در کانسنگ دارد. همچنین مقادیر قابل توجه عناصر نادر خاکی به‌ویژه عناصر LREE در کانسنگ دیده می شود؛ به‌طوری‌که مقدار کل عناصر نادر خاکی اغلب بیش از 100 گرم در تن بوده و به 4827 گرم در تن نیز می رسد. سنگ میزبان، کانی شناسی، ساخت و بافت، آلتراسیون و ژئوشیمی این بخش از کانسار ده زمان شبیه به ذخایر آهن نوع کایروناست.
اختلاف قابل توجه پذیرفتاری مغناطیسی رگه های آهن آپاتیت دار ( SI5-10×5000 تا SI3-10×2000) و سنگ میزبان آتشفشانی (صفر تا SI 5-10× 70) باعث شده است تا روش مغناطیس سنجی و تلفیق آن با داده های زمین شناسی و کانی سازی بهترین روش برای اکتشاف آهن و عناصر نادر خاکی همراه با آن در منطقه باشد. تغییرات شدت کل میدان مغناطیسی در بخش مرکزی و شرقی به‌ترتیب 8981 گاما و 15592 گاماست. نقشه RTP قسمت شرقی نشان دهنده وجود ناهنجاری با روند تقریباً شمالی- جنوبی است که گسترش عرضی آن در عمق به بیش از 20 متر می رسد. نقشه های فراسو می رساند که عمق منبع ایجاد‌کننده ناهنجاری (کانی‌سازی مکنتیت) تا بیش از 50 متر ادامه دارد. در مرکز این زون به‌دلیل افزایش میزان اسپکیولاریت در رگه ها، ناهنجاری مغناطیسی پاسخ مناسبی ندارد. بر پایه ناهنجاری‌های مغناطیسی، زمین‌شناسی، کانی‌سازی و شیب رگه ها در سطح تعداد 4 نقطه حفاری برای بخش شرقی پیشنهاد شد. ناهنجاری مغناطیسی در پنجره مرکزی دارای روند شرقی- غربی با عرض کم (حدود 25 متر) است و انطباق خوبی با رخنمون‌های سطحی دارد. عمق کانی زایی بخش شرقی این زون تا بیش از 50 متر ادامه دارد. حرکت گسل‌های راست‌گرد در قسمت میانی این منطقه باعث نبود کانه زایی و نبود پیوستگی ناهنجاری مغناطیسی شده است. بر پایه ناهنجاری های مغناطیسی و شیب رگه‌ها در سطح، دو نقطه حفاری برای بخش مرکزی پیشنهاد شد.

کلیدواژه‌ها


Bonyadi, Z., Davidson, G.J., Mehrabi B., Meffre S. and Ghazban, F., 2011. Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide–apatite deposit, Bafq district, Iran, insights from paragenesis and geochemistry. Chemical Geology, 281(2011):253–269.
Boynton, W.V., 1985. Cosmo chemistry of the rare earth elements, Meteorite studies. In: P., Henderson (Editor), Rare Earth Element Geochemistry, (Developments in Geochemistry 2). Elsevier, Amsterdam, pp. 115-1522.
Clark, D.A., 1997. Magnetic pethrophisics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO Journal of Australian Geology and Geophysics, 17(2): 83-103.
Cooper, G.R.J. and Cowan, D.R., 2004. Filtering using variable order vertical derivatives. Computers and Geosciences, 30(5): 455-459.
Daliran, F., 1990. The magnetite-apatite deposit of Mishdovan, East Central Iran, An alkali rhyolite hosted, ‘Kiruna type’ occurrence in the Infracambrian Bafg Metallotectonic (Mineralogic, Petro-graphic and geochemical study of the ores and the host rocks). Unpublished Ph.D. thesis, University of Karlsruhe, Karlsruhe, Germany, 248 pp.
Daliran, F., 2002. Kiruna type iron oxide-apatite ores and apatities of the Bafq district, Iran, with an emphasis on the REE geochemistry of the their apatites. In: T.M. Porter (Editor), Hydrothermal iron oxide copper gold and related deposits: a global perspective. PGC Publishing, Adelaide, pp. 303-320.
Daliran, F., Stosch, H.G. and Williams, P., 2007. Multistage metasomatism and mineralization at hydrothermal Fe oxide-REE-apatite deposits and apatitites of the Bafq District, Central-East Iran. In: C.J. Andrew, et al. (Editors), Digging deeper, Proceeding of the 9th Biennial SGA Meeting, Dublin, pp. 1501-1504.
Daliran, F., Stosch, H.G. and Williams, P., 2009. A review of the early Cambrian magmatic and metasomatic events and their bearing on the genesis of the Fe oxide-REE-apatite deposits (IOA) of the Bafq District, Iran. In: P.E. Williams’s (Editor), Smart science for exploration and mining, Proceedings of the 10th Biennial of the Society for Geology Applied to Mineral Deposits, Townsville, Qld, Australia, pp. 623-625.
Daliran, F., Stosch, H.G. and Williams, P., 2010. Lower Cambrian iron oxide–apatite-REE (U) deposits of the Bafq district, east- Central Iran. In: L. Corriveau, and H. Mumin, (Editors), Exploring for iron-oxide copper-gold deposits: Canada and global analogues. Published in partnership by Mineral Deposits Division, Geological Association of Canada and Geological Survey of Canada, short course notes, 20, Quebec, pp. 143-155.
Ford, K., Kating, P. and Thomas, M.D., 2007. Overview of geophysical signature associated with Canadian ore deposits. Geological Survey of Canada, Geological Association of Canada, Mineral Deposits Division, Special Publication 5. pp. 939–970.
Foster, H. and Jafarzadeh, A., 1994. The Bafq mining district in Central Iran- a highly mineralized Infracambrian volcanic field. Economic Geology, 89(8): 1697-1721.
Frietsch, R. and Perdahl, J.A., 1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews, 9(6): 489–510.
Gunn, P.J., 1996. Workshop Interpretation of aeromagnetic data. Journal of Australian Geology and Geophysics, 17(2): 105-113.
Gunn, P.J., Madment, D. and Milligan, P.R., 1997. Interpreting aeromagnetic data in areas of limited outcrop. Journal of Australia Geology and Geophysics, 17(2):175-185.
Hajimirzajan, H., Malekzadeh Shafaroudi, A., Hidarian Shahri, M.R. and Homam, S.M., 2017 a. Modeling of magnetite- specularite mineralization in Dehzaman iron deposit, Khorasan Razavi province: mineralogy, texture and structure, and alteration. Iranian Journal of Crystallography and Mineralogy, 25(3): 543-556. (in Persian)
Hajimirzajan, H., Malekzadeh Shafaroudi, A., Hidarian Shahri, M.R. and Homam, S.M., 2017b. Geochemistry and genesis of apatite-bearing magnetite-specularite ore body in Dehzaman iron deposit, Northeastern Kashmar-Kerman tectonic zone. Journal of Advanced Applied Geology, in print.
Imanpour, B., Karimpour, M.H. and Malekzadeh Shafaroudi, A., 2017. Mineralization and geochemistry of Dehzaman hematite ore deposit (southwest of Bardaskan) and comparison with banded iron formation deposits. Iranian Journal of Crystallography and Mineralogy, 4(24): 675-690. (in Persian)
Thebault, E., Finlay, C., Beggan C.D., Patrick, A., Aubert, J. and Barrois, O., 2015. Earth, Planets and Space, 67:79. Retrieved June 27, 2016, From http://wdc.kugi.kyoto-u.ac.jp/igrf/point
NOAA (National Oceanic and Atmospheric Administration), 2016. Retrieved September 27, 2001, From https://www.ngdc.noaa.gov/geomag-web/
Jami, M., Dunlop, A.C. and Cohen, D.R., 2007. Fluid inclusion and stabele isotope study of the Esfordi apatite-magnetite deposite, Central Iran. Economic Geology, 102(6): 1111-1128.
Moore, F. and Modabberi, S., 2003. Origin of choghart iron oxide deposit, Bafq mining district, central Iran: new isotopic and geochemical evidence. Journal of Sciences, Islamic Republic of Iran, 14(3): 259-269.
Nakatsuka, T. and Okuma, S., 2006. Reduction of magnetic anomaly observations from helicopter surveys at varying elevations. Exploration Geophysics, 37(1): 121-128.
Nozaem, R., Mohajjel, M., Rossetti, F., Della Seta, M., Vignaroli, G., Yassaghi, A., Salvini, S. and Eliassi, M., 2013. Post-Neogene right-lateral strike–slip tectonics at the north-western edge of the Lut Block (Kuh-e-Sarhangi Fault), Central Iran. Tectonophysics, 589: 220–233.
Nozaem, R., Mohajjel, M., Yasaghi, A. and Nasrabadi, M., 2014. Structural analysis and determination of deformation under Kuh-e-sarhangi shear zone in the granite of the mountain, northwest Lut Block. Iranian Journal of Crystallography and Mineralogy, 22(1): 15-26. (in Persian)
Ramezani, J. and Tucker, R., 2003. The saghand region, central Iran: U-Pb geochronology, pertrogenesis and implication for gondwana tectonics. American journal of science, 303(7): 622-665.
Rossetti, F., Nozaem, R., Lucci, F., Vignaroli, G., Gerdes, A., Nasrabadi, M. and Theye, T., 2015. Tectonic setting and geochronology of the Cadomian magmatism in Central Iran, Kuh-e- Sarhangi region (NW Lut Block. Journal of Asian Earth Sciences, 102(2015): 24-44.
Sahandi, M.R., Ghasemi, M.R. and Ekhtiarabadi, A., 2010. Geological map of Ghasemabad, Scale 1:100,000. Geological Survey of Iran.
Tarlowski, C., Gunn, P.J. and Mackey, T., 1997. Enhancements of the magnetic map of Australia. Journal of Australia Geology and Geophysics, 17(2): 77-82.
Torab, F.M. and Lehmann, B., 2007. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine, 71(3): 347–363.
Urquhart, W.E.S., 2007. Airborne magnetic data compilation and interpretation. Geophysical Airborne Survey Compilation and Interpretation, http://www.geoexplo.com/airborne_survey_workshop.html
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187.
CAPTCHA Image