تکامل فیزیکوشیمیایی سیال گرمابی در سامانه مس پورفیری کوه اسفند، جنوب جیرفت، استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زمین‏ شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استاد، گروه زمین ‏شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

3 دانشیار، دانشکده علوم زمین، دانشگاه دامغان، دامغان، ایران

4 استادیار، گروه زمین ‏شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

5 دانشیار، گروه زمین ‏شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

6 کارشناس ارشد تحقیقات اکتشاف، مرکز تحقیقات و فناوری شرکت معدنی و صنعتی گلگهر، کرمان، ایران

7 دانشجوی کارشناسی، گروه زمین‏ شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

کانسار مس کوه اسفند در جنوبی ‏ترین بخش از کمربند ماگمایی ارومیه- دختر واقع‌شده است. توده ‏های نفوذی با طیف دیوریت تا کوارتزدیوریت و گرانودیوریت الیگوسن- میوسن در مجموعه آتشفشانی ائوسن جای گرفته ‏اند. بر اساس طبقه ‏بندی رگه- رگچه ‏ها، مرحله کانی ‏سازی اصلی شامل کوارتز پیریت کالکوپیریت مرتبط با دگرسانی پتاسیک است. بر اساس بررسی‌های سنگ‌نگاری، میان‌بارهای سیال در کانی کوارتز در سه گروه اصلی و هفت گروه فرعی طبقه ‏بندی می‏شوند: 1- میان‌بارهای سیال غنی از گاز شامل: میان‌بارهای سیال تک فازی گازی (V)، میان‌بارهای سیال دوفازی غنی از گاز ساده (VL) و میان‌بارهای سیال غنی از گاز همراه با فاز کدر (VLS) ، 2- میان‌بارهای سیال غنی از مایع شامل: میان‌بارهای سیال دوفازی غنی از مایع ساده (LV) و میان‌بارهای سیال غنی از مایع همراه با فاز کدر (LVS) و 3- میان‌بارهای سیال شور شامل: میان‌بارهای سیال سه فازی شور ساده (LVH) و میان‌بارهای سیال شور چند فازی (LVHS) حاوی فاز جامد هالیت هماتیت انیدریت سیلویت کالکوپیریت). میان‌بارهای سیال شور چند فازی با دما و شوری بالا (358 تا 598 درجه سانتی‏ گراد و 42 تا 70 درصد شوری معادل نمک طعام) با منشأ ماگمایی نخستین سیالات تشکیل‏ دهنده کانسار و میا‌ن‌بارهای سیال دوفازی غنی از مایع با دما و شوری پایین (290 تا490 درجه سانتی‏گراد و 11 تا 20 درصد شوری معادل نمک طعام) با منشأ ماگمایی- جوی مرتبط با آخرین گردش سیال گرمابی و اختلاط با سیال با شوری پایین‏ تر ‏هستند. کاهش دما ناشی از وقوع فرایند جوشـش ثانویه و اخـتلاط سـیالات ماگمایی و جوی به ناپایداری کمپلکس کلریدی حامل فلز مس و کانی‏ سازی در شرایط مساعد منجر‌شده است.

کلیدواژه‌ها


Aftabi, A. and Atapour, H., 2009. Comments on Arc magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences by J. Omrani, P. Agard, H. Whitechurch, M. Bennoit, G. Prouteau, L. Jolivet. Lithos, 113(3–4): 844–846. https://doi.org/10.1016/j.lithos.2009.04.032
Aghazadeh, M. 2015. Petrogenesis and U-Pb Age Dating of Intrusive Bodies in the Sarcheshmeh Deposit. Scientific Quarterly Journal of Geosciences, 25(97): 291–312. https://doi.org/10.22071/gsj.2015.41516
Aghazadeh, M., Hou, Z., Badrzadeh, Z. and Zhou, L., 2015. Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore geology reviews, 70: 385–406. https://doi.org/10.1016/j.oregeorev.2015.03.003
Ahmad, S.N. and Rose, A.W., 1980. Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Economic Geology, 75(2): 229–250. https://doi.org/10.2113/gsecongeo.75.2.229
Arndt, N.T. and Ganino, C., 2012. Metals and society: An introduction to economic geology: Berlin. Springer-Verlag, Germany, 160 pp. https://doi.org/10.1007/978-3-642-22996-1
Asadi, S., Moore, F. and Fattahi, N., 2012. Fluid inclusion and stable isotope constraints on the genesis of the Jian copper deposit, SanandajSirjan metamorphic zone, Iran. Geofluids, 13(1): 66–81. https://doi.org/10.1111/gfl.12013
Atapour, H., 2017. The exploration significance of Ag/Au, Au/Cu, Cu/Mo,(Ag× Au)/(Cu× Mo) ratios, supra-ore and sub-ore halos and fluid inclusions in porphyry deposits: a review. Journal of Sciences, Islamic Republic of Iran, 28(2): 133–146. https://jsciences.ut.ac.ir/article_60750.html
Atapour, H. and Aftabi, A., 2021. Petrogeochemical evolution of calcalkaline, shoshonitic and adakitic magmatism associated with Kerman Cenozoic arc porphyry copper mineralization, southeastern Iran: A review. Lithos, 398–399: 106261. https://doi.org/10.1016/j.lithos.2021.106261
Avalos, S. and Avalos, N., 2023. Fluid inclusions technique for porphyry deposit exploration: The Rosario porphyry Cu-Mo deposit. https://doi.org/10.31223/X5H083
Becker, S.P., Fall, A. and Bodnar, R.J., 2008. Synthetic fluid inclusions. XVII. 1 PVTX properties of high salinity H2O-NaCl solutions (> 30 wt.% NaCl): Application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits. Economic Geology, 103(3): 539–554. https://doi.org/10.2113/gsecongeo.103.3.539
Bodnar, R.J., 1994. Synthetic fluid inclusions: XII. The system H2O NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt.% NaCl solution. Geochimica et Cosmochimica Acta, 58(3): 1053–1063. https://doi.org/10.1016/0016-7037(94)90571-1
Bodnar, R.J. and Beane, R.E., 1980. Temporal and spatial variations in hydrothermal fluid characteristics during vein filling in preore cover overlying deeply buried porphyry copper-type mineralization at Red Mountain, Arizona. Economic Geology, 75(6): 876–893. https://doi.org/10.2113/gsecongeo.75.6.876
Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D. and Steele-MacInnis, M., 2014. 13.5–Fluid inclusions in hydrothermal ore deposits. Treatise on geochemistry, 13: 119–142.  https://doi.org/10.1016/B978-0-08-095975-7.01105-0
Bodnar, R.J. and Vityk, M.O. 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In B. de Vivo and M. L. Frezzotti (Eds.), Fluid Inclusions in Minerals, Methods and Applications. Virginia Tech, Blacksburg, Virginia, 117–130 pp. Retrieved June 21, 2024 from https://www.researchgate.net/file.PostFileLoader.html?id=59d2e7af3d7f4bcbe2356849&assetKey=AS%3A545186906206209%401506994095585
Borisenko, A.‌S., 1977. Studies of salinity of gas-liquid inclusions in minerals by the cryometric method. Soviet Geology and Geophysics 18: 11–19. Retrieved June 21, 2024 from https://www.researchgate.net/publication/283688999
Bouzari, F. and Clark, A.H., 2006. Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado hypogene protore, I Región, northern Chile. Economic Geology, 101(1): 95–134. https://doi.org/10.2113/gsecongeo.101.1.95
Brown, P.E., 1989.  FLINCOR; a microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist, 74(11–12): 1390–1393. Retrieved June 21, 2024 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/74/11-12/1390/42220/
Cline, J.S. and Bodnar, R.J., 1991. Can economic porphyry copper mineralization be generated by a typical calc‐alkaline melt? Journal of Geophysical Research: Solid Earth, 96(B5): 8113–8126. https://doi.org/10.1029/91JB00053
Cline, J.S. and Bodnar, R.J., 1994. Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit. Economic Geology, 89(8): 1780–1802. https://doi.org/10.2113/gsecongeo.89.8.1780
Conrad, G., Conrad, J. and Girod, M., 1977. Les formation continentales tertiaries et quaternaries du bolc Lout Iran. Importance du plutonisme et du volcanisme. Memoirs of the Historical Series of the Geological Society France, 8: 53–75. Retrieved June 21, 2024 from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM7720435244
Crespo, J., Reich, M., Barra, F., Verdugo, J.J., Martínez, C., Leisen, M., Romero, R., Morata, D. and Marquardt, C., 2020. Occurrence and distribution of silver in the world-class Río Blanco Porphyry Cu-Mo deposit, central Chile. Economic Geology, 115(8): 1619–1644. https://doi.org/10.5382/econgeo.4778
Cunningham, C.G., 1978. Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems. Research United States Geological Survey, 6(6): 745–754.
Dimitrijevic, M.‌D. 1973. Geology of Kerman Region. Institute for Geological and Mining Exploration and Investigation of Nuclear and Other Mineral Raw Materials, Belgrade. Geological Survey of Iran, Report Yu/52. 334 pp. Retrieved June 21, 2024 from https://search.worldcat.org/title/geology-of-kerman-region/oclc/8699834
Drummond, S.E. and Ohmoto, H., 1985. Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80(1): 126–147. https://doi.org/10.2113/gsecongeo.80.1.126
Fournier, R.O., 1987. Conceptual models of brine evolution in magmatic-hydrothermal systems. U.S. Geological Survey Professional Paper. 1350: 1487–1505. Retrieved June 21, 2024 from https://pubs.usgs.gov/pp/1987/1350/pdf/chapters/pp1350_ch55.pdf
Goldstein, R.H., 2003. Petrographic analysis of fluid inclusions. In: Samson, I., Anderson, A. and Marshall, D (Editors), Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Short Course Handbook, pp. 32–53. Retrieved June 21, 2024 from https://pubs.geoscienceworld.org/mac/books/edited-volume/2433/chapter-abstract/135797493/PETROGRAPHIC-ANALYSIS-OF-FLUID-INCLUSIONS?redirectedFrom=fulltext
Golestani, M., Karimpour, M.‌H., Malekzadeh Shafaroudi, A. and Haidarian Shahri, M.R. 2017. Characterization of fluid inclusions and sulfur isotopes in the Iju porphyry copper deposit, North West of Shahr-e-Babak. Journal of Economic Geology, 9(1): 25–55. (in Persian with English abstract) https://doi.org/10.22067/econg.v9i1.60709
Habibi, T. and Hezarkhani, A., 2013. Hydrothermal evolution of Daraloo porphyry copper deposit, Iran: evidence from fluid inclusions. Arabian Journal of Geosciences, 6: 1945–1955. https://doi.org/10.1007/s12517-011-0488-z
Hassanzadeh, J., 1993. Metallogenic and Tectonomagmatic Events in the SE Sector of the Cenozoic Active Continental Margin of Central Iran (Shahr e Babak area, Kerman Province). Ph.D. Thesis, University of California, Los Angeles, United States of America, 204 pp.
Hezarkhani, A., 2009. Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran: Evidence from fluid inclusions. Journal of Geochemical Exploration, 101(3): 254–264. https://doi.org/10.1016/j.gexplo.2008.09.002
Hosseinzadeh, M., Maghfouri, S., Ghorbani, M. and Moayyed, M., 2016. Different types of vein- veinlets related to mineralization and fluid inclusion studies in the Sonajil porphyry Cu- Mo deposit, Arasbaran magmatic zone. Scientific Quarterly Journal of Geosciences, 26(101): 219–230.  https://doi.org/10.22071/gsj.2016.41069
Ioannou, S.E., Spooner, E.T.C. and Barrie, C.T., 2007. Fluid temperature and salinity characteristics of the Matagami volcanogenic massive sulfide district, Quebec. Economic Geology, 102(4): 691–715. https://doi.org/10.2113/gsecongeo.102.4.691
John, D.A. and Taylor, R.D., 2016. By-products of porphyry copper and molybdenum deposits. Society of Economic Geologists, Inc. Reviews in Economic Geology, 18: 137–164. https://doi.org/10.5382/Rev.18.07
Kesler, S.E., 2005. Ore-forming fluids. Elements, 1‌(1): 13–18. https://doi.org/10.2113/gselements.1.1.13
Khosravi, M., Rajabzadeh, M.A., Mernagh, T.P., Qin, K., Bagheri, H. and Su, S., 2020. Origin of the ore-forming fluids of the Zefreh porphyry Cu–Mo prospect, central Iran: Constraints from fluid inclusions and sulfur isotopes. Ore Geology Reviews, 127: 103876. https://doi.org/10.1016/j.oregeorev.2020.103876
Large, R.R., Bull, S.W., Cooke, D.R. and McGoldrick, P.J. 1998. A genetic model for the HYC Deposit, Australia; based on regional sedimentology, geochemistry, and sulfide-sediment relationships. Economic Geology, 93(8): 1345–1368. https://doi.org/10.2113/gsecongeo.93.8.1345
Lerchbaumer, L. and Audétat, A., 2012. High Cu concentrations in vapor-type fluid inclusions: An artifact? Geochimica et Cosmochimica Acta, 88: 255–274. https://doi.org/10.1016/j.gca.2012.04.033
Maanijou, M., Mostaghimi, M., Abdollahi Riseh, M. and Sepahi, A. A. 2012. Systematic sulfur stable isotope and fluid inclusion studies on veinlet groups in the Sarcheshmeh porphyry copper deposit: based on new data. Journal of Economic Geology, 4(2): 217–239. (in Persian with English abstract) https://doi.org/10.22067/econg.v4i2.16492
Maanijou, M., Mostaghimi, M., Abdollahy Riseh, M. and Sepahi, A. A., 2020. Petrology and tectonic settings of the Sarcheshmeh porphyry copper deposit with emphasis on granodiorite and quartz eye porphyry. Journal of Economic Geology, 12(3): 269–297. (in Persian with English abstract) https://doi.org/10.22067/econg.v12i3.80951
Maanijou, M., Mostaghimi, M., Riseh, M.A., Lentz, D.R. and Sepahi Gerow, A.A., 2022. Petrology and geochemistry of adakitic intrusions and dykes at Sarcheshmeh porphyry Cu‐Mo±Au deposit, Iran: Insights into their source. Resource Geology, 72(1): 12297. https://doi.org/10.1111/rge.12297
Malekshahi, S., Khalajmasoumi, M., Mohammad- Doost, H., Sojdehee, M. and Aboutorab, S., 2023. Study of Alterations, fluid inclusions and sulfur and oxygen isotope compositions in Sarkuh porphyry copper deposit, Kerman.  Scientific Quarterly Journal of Geosciences, 33(3): 159–182. https://doi.org/10.22071/gsj.2023.363665.2033
McQuarrie, N., Stock, J.M., Verdel, C. and Wernicke, B.P., 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysical research letters, 30(20). https://doi.org/10.1029/2003GL017992
McQuarrie, N. and van Hinsbergen, D.J., 2013. Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41(3): 315–318. https://doi.org/10.1130/G33591.1
Mohammadi Qaqab, H. and Taghipour, N., 2011. Physico-chemical evolution of hydrothermal fluid in Sara porphyry copper deposit (Percom), Kerman province. Advanced Applied Geology, 1(1): 11–24. (in Persian with English abstract) Retrieved June 21, 2024 from https://aag.scu.ac.ir/article_11540.html?lang=en
Nateghi, A. and Hezarkhani, A., 2013. Fluid inclusion evidence for hydrothermal fluid evolution in the Darreh-Zar porphyry copper deposit, Iran. Journal of Asian Earth Sciences, 73: 240–251. https://doi.org/10.1016/j.jseaes.2013.04.037
Natghi, A. and Ghorbani Shadpi, R., 2015. The application of fluid inclusions in the exploration of deposits: a case study in the exploration area of Hamza Dareh, The first specialized and national conference on the application of fluids involved in earth sciences, Zanjan, Iran. Retrieved June 21, 2024 from https://civilica.com/doc/421248
Rahmani, H. and Ghorbani, M., 2023. Geology, mineralization, sulfur isotope and fluid inclusion studies in alteration zones in Cu-Au-Mo south of Zahedan porphyry prospect (SE Iran). International Journal of Mining and Geo-Engineering, 57(3): 283–298. Retrieved June 21, 2024 from https://ijmge.ut.ac.ir/article_92580.html
Rasoli, J., Ghorbani, M. and Ahadinegad, V. 2017. The U-Pb dating of Jebale Barez plutonic complex: Evidence for the Old Iranian basement in the SE of Urumieh-Dokhtar magmatic zone. Iranian Journal of Crystallography and Mineralogy, 25‌(2): 245–258. Retrieved June 21, 2024 from http://ijcm.ir/article-1-788-en.html
Roedder, E., 1971. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Economic Geology, 66(1): 98–118. https://doi.org/10.2113/gsecongeo.66.1.98
Roedder, E., 1972. Composition of fluid inclusions. U.S. Geological Survey Professional Paper, Washington, Report 440, 163 pp. https://doi.org/10.3133/pp440JJ
Roedder, E., 1984. Fluid inclusions. De Gruyter, Berlin, Boston. 644 pp. https://doi.org/10.1515/9781501508271
Rusk, B.G., Reed, M.H. and Dilles, J.H., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology, 103(2): 307–334. https://doi.org/10.2113/gsecongeo.103.2.307
Seo, J.H. and Heinrich, C.A., 2013. Selective copper diffusion into quartz-hosted vapor inclusions: Evidence from other host minerals, driving forces, and consequences for Cu–Au ore formation. Geochimica et Cosmochimica Acta, 113: 60–69. https://doi.org/10.1016/j.gca.2013.03.016
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44:.265-283. http://dx.doi.org/10.1007/s00126-008-0216-0
Shelton, K.L., 1983. Composition and origin of ore-forming fluids in a carbonate-hosted porphyry copper and skarn deposit, a fluid inclusion and stable isotope study of Mines Gaspe Quebec. Economic Geology, 78(8): 387–421. https://doi.org/10.2113/gsecongeo.78.3.387
Shepherd, T.‌J., Rankin, A.‌H. and Alderton, D.‌H.‌M. 1985. A practical guide to fluid inclusion studies. Blackie, Glasgow, New York. Retrieved June 21, 2024 from https://search.worldcat.org/title/12082734
Siivola, J. and Schmid, R., 2007. List of Mineral Abbreviations: Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 01.02.07. (Electronic Source), Retrieved June 21, 2024 from https://www.B2n.ir/f95089
Sillitoe, R.H., 2010. Porphyry copper systems. Economic geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
Singer, D.A., Berger, V.I. and Moring, B.C., 2002. Porphyry copper deposits of the world: Database, maps, and preliminary analysis, US Geological Survey, Report 02-268. Retrieved June 21, 2024 from https://pubs.usgs.gov/of/2002/0268/pdf/of02-268.pdf
Singer, D.A., Berger, V.I. and Moring, B.C., 2008. Porphyry copper deposits of the world: Database and grade and tonnage models, US Geological Survey, Washington, 2008(2008-1155), 46 pp. US Geological Survey. Retrieved June 21, 2024 from https://pubs.usgs.gov/of/2008/1155/of2008-1155.pdf
Taghipour, N., 2007. The Application of Fluid Inclusions and Isotope Geochemistry as Guides for Exploration, Alteration and Mineralization at the Miduk Porphyry Copper Deposit, Shar-e-Babak, Kerman. Unpublished Ph.D. thesis, Shahid Bahonar University, Kerman, Iran, 305 pp.
Taghipour, N., Asgari, Gh., Dorani, M. and Mortezanezhad, Gh. R., 2020. Conducting prospecting and general exploration services in the northern and southern areas of the Bam exploration Block, Kerman Province, Iran, University of Damghan, University of Damghan, Report 112, 337 pp. Unpubished report.
Thiersch, P.C., Williams-Jones, A.E. and Clark, J.R., 1997. Epithermal mineralization and ore controls of the Shasta Au-Ag deposit, Toodoggone district, British Columbia, Canada. Mineralium Deposita, 32: 44–57. https://doi.org/10.1007/s001260050071
Ulrich, T., Günther, D. and Heinrich, C.A., 2001. The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology, 96(8): 1743–1774. https://doi.org/10.2113/gsecongeo.96.8.1743
Ulrich, T. and Mavrogenes, J., 2008. An experimental study of the solubility of molybdenum in H2O and KCl–H2O solutions from 500 C to 800 C, and 150 to 300 MPa. Geochimica et Cosmochimica Acta, 72(9): 316–2330. https://doi.org/10.1016/j.gca.2008.02.014
Van den Kerkhof, A.M. and Hein, U.F., 2001. Fluid inclusion petrography. Lithos, 55(1–4): 27–47. https://doi.org/10.1016/S0024-4937(00)00037-2
Wang, Y., Chen, H., Xiao, B., Han, J., Fang, J., Yang, J. and Jourdan, F., 2018. Overprinting mineralization in the Paleozoic Yandong porphyry copper deposit, Eastern Tianshan, NW China—Evidence from geology, fluid inclusions and geochronology. Ore Geology Reviews, 100: 148–167. https://doi.org/10.1016/j.oregeorev.2017.04.013
Wang, R., Zhu, D., Wang, Q., Hou, Z., Yang, Z., Zhao, Z. and Mo, X., 2020. Porphyry mineralization in the Tethyan orogen. Science China Earth Sciences, 63: 2042–2067. https://doi.org/10.1007/s11430-019-9609-0
Waterman, G.C. and Hamilton, R.L., 1975. The Sar Cheshmeh porphyry copper deposit. Economic Geology, 70(3): 568–576. https://doi.org/10.2113/gsecongeo.70.3.568
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4): 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
Williams-Jones, A.E. and Heinrich, C.A., 2005. 100th Anniversary special paper: vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 100(7): 1287–1312. https://doi.org/10.2113/gsecongeo.100.7.1287
Zajacz, Z., Candela, P.A. and Piccoli, P.M., 2017. The partitioning of Cu, Au and Mo between liquid and vapor at magmatic temperatures and its implications for the genesis of magmatic-hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 207: 81–101. https://doi.org/10.1016/j.gca.2017.03.015
Zarasvandi, A.‌R., Davoodian Ranjbar, F., Rezaei, M., Tashi, M. and Pourkaseb, H., 2020. Physicochemical attributes of potassic alteration zone in Sarkuh porphyry copper deposit; using biotite and chlorite chemistry. Scientific Quarterly Journal of Geosciences, 29(114): 279–288. https://doi.org/10.22071/gsj.2019.116399.1390
Zarasvandi, A., Liaghat, S., Lentz, D. and Hossaini, M., 2013. Characteristics of Mineralizing Fluids of the Darreh‐Zerreshk and Ali‐Abad Porphyry Copper Deposits, Central I ran, Determined by Fluid Inclusion Microthermometry. Resource Geology, 63(2): 188–209. https://doi.org/10.1111/rge.12004
Zarasvandi, A., Rezaei, M., Raith, J.G., Asadi, S. and Lentz, D., 2019. Hydrothermal fluid evolution in collisional Miocene porphyry copper deposits in Iran: Insights into factors controlling metal fertility. Ore Geology Reviews, 105: 183–200. https://doi.org/10.1016/j.oregeorev.2018.12.027
Zhang, F.F., Wang, Y.H., Xue, C.J., Liu, J.J. and Zhang, W., 2019. Fluid inclusion and isotope evidence for magmatic-hydrothermal fluid evolution in the Tuwu porphyry copper deposit, Xinjiang, NW China. Ore Geology Reviews, 113: 103078. https://doi.org/10.1016/j.oregeorev.2019.103078
Zhang, L., Zheng, Y. and Chen, Y., 2012. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb–Zn–Cu deposit, Altay, Xinjiang, China: a case study of orogenic-type Pb–Zn systems. Journal of Asian Earth Sciences, 49: 69–79. https://doi.org/10.1016/j.jseaes.2011.11.019
Zimmerman, A., Stein, H.J., Hannah, J.L., Koželj, D., Bogdanov, K. and Berza, T. 2008. Tectonic configuration of the Apuseni–Banat—Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precision R e–O s molybdenite ages. Mineralium Deposita, 43: 1–21. http://dx.doi.org/10.1007/s00126-007-0149-z
Zimmerman, A., Stein, H.J., Morgan, J.W., Markey, R.J. and Watanabe, Y. 2014. Re–Os geochronology of the El Salvador porphyry Cu–Mo deposit, Chile: tracking analytical improvements in accuracy and precision over the past decade. Geochimica et Cosmochimica Acta, 131: 13–32. https://doi.org/10.1016/j.gca.2014.01.016
     
CAPTCHA Image