

زمین شناسی اقتصادی جلد ۱۳، شماره ۱ (سال ۱۴۰۰) صفحات ۱۱۳ تا ۱۴۴

مقاله پژوهشے

تحول سازوکار آتشفشانی در بخش میانی کمان ماگمایی ارومیه-دختر

محمد سیاری ۱* و مرتضی شریفی ۲

1) مدیریت مطالعات پایه منابع آب، شرکت آب منطقهای اصفهان، اصفهان، ایران ۲) گروه زمین شناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان، ایران

دریافت مقاله: ١٣٩٨/١١/٢٧، پذیرش: ١٣٩٩/٠٢/٧

چکیدہ

در این پژوهش پایگاه ژئوشیمی زمین مرجع متشکل از ۹۹ آنالیز شیمیایی در طول حدود ۲۰۰ کیلومتر از بخش میانی کمان ماگمایی ارومیه-دختر (از شمال تا شرق اصفهان) مورد کنکاش قرار گرفت. این محدوده بین طولهای جغرافیایی '۵۱°۵۱ و '۵۷°۵۷ شرقی و عرضهای جغرافیایی '۵۳°۳۵ (ک^۳۳۵ شمالی واقع شده است. این پایگاه داده از بین داده های ژئوشیمیایی سنگ کل منتشر شده در پهنه مورد بررسی که دو شرط مهم را داشته اند، انتخاب شدند. اول اینکه داده ها دارای مختصات جغرافیایی صحیح و یا نقشه مختصات دار باشند، دوم اینکه آنالیزها توانایی تفکیک سریهای ماگمایی و تشخیص آداکیت ها را داشته باشند (عناصر کمیاب Y، Y، Y، Y، P، او قت مناسب گزارش شده اند). این آنالیزها در سه دسته سنی اتوسن، الیگوسن – پلیوسن و پلیو کواترنر قرار می گیرند. یک نمودار جریانی برای شناسایی سری ماگمایی نمونه ها طراحی شد و کلیه داده ها به صورت نظام مند بر مبنای آن مورد تحلیل قرار گرفتند. نیک نمودار جریانی برای شناسایی سری فاز اول اغلب کالک آلکالن، فاز دوم معمولاً شوشونیتی و فاز سوم اغلب آداکیتی بوده است. با استفاده از نمودارهای تعیین درصد لرزولیت به دست آمایی مشخص شد که نمونه های کالک آلکالن از ذوب بخشی حدود ۱۵ درصد گوه گوشته ای اسپیل – گارنت تفکیکاند. دسته اول این می دوم میشو که نمونه های کالک آلکالن از ذوب بخشی حدود ۱۵ درصد گوه گوشته ای اسپینل – گارنت تفکیکاند. دسته اول ای مشخص شد که نمونه های شوشونیتی از ذوب بخشی حدود ۱۶ درصد گوه گوشته ای اسپینل – گارنت تفکیکاند. دسته اول، نمونه های مشخه می نمونه های شوشونیتی از ذوب بخشی حدود ۱۰ درصد گوه گوشته ای اسپینل – گارنت تفکیکاند. دسته اول، نمونه های منطقه کجان و کهنگ که از ذوب بخشی حدود ۱۰ درصد گور گوشته ای ایر کیب اسپینل – گارنت تفکیکاند. دسته اول، نمونه های منطقه کجان و کهنگ که از ذوب بخشی حدود ۱۰ درصد گور نی میشونی منش به دوم. تمونه های منطقه جوشقان حقور که نزدیکی بیشتری با سنگ منشا هو دربلند اکلوژیت دارند، ذوب بخشی منشا به دو دسته دوم، نمونه های منطقه جوشقان حقور که نزدیکی بیشتری با سنگ منشا می داشتن می دوم ۶ درصد نمان می منشا به دود. اینه باید توجه داشت این تفاسیر برمبنای داده می صریز در در در دار در می گور تان آمنی مینه داند دوم بانشان می دهند.

واژههای کلیدی: آتشفشانی، سنوزوئیک، ذوببخشی، آداکیت، ارومیه-دختر

DOI: https://dx.doi.org/10.22067/econg.v13i1.85642

*مسئول مكاتبات: m.sayari@gmail.com

مقدمه

نیاز به نرمافزارهای قوی و تخصص یافته برای پردازش آماری دادهها بیشتر ضروری به نظر می رسد. از این گذشته وقتی دادههای ژئوشیمیایی، زمین مرجع می شوند و در محیط GIS با دادههای ژئوفیزیکی، زمین ساختی و ساختارهای منطقه ای و ناحیه ای تلفیق می شوند، اطلاعات با ارزشی درباره تکامل ژئودینامیکی و تکتونوماگمایی منطقه مهیا می کنند. متأسفانه پخنین اطلاعاتی با وجود تعدد پژوهش های پترولوژیکی انجام شده در کمان ارومیه - دختر نادر هستند (هم از لحاظ نوع انجام شده در کمان ارومیه - دختر نادر هستند (هم از لحاظ نوع زئوشیمی و سپس پردازش نظام مند داده های ژئوشیمیایی برای در این پژوهش، سعی شده است با ارائه یک پایگاه داده ماگمایی ارومیه - دختر (از شمال تا شرق اصفهان)، تحول

روش مطالعه

برای ایجاد پایگاه داده های ژئوشیمی زمینمرجع، آنالیزهای شیمیایی سنگهای آتشفشانی ائوسن تا کواترنر (تفکیک سنی بر اساس نقشههای زمین شناسی) در پهنه مورد بررسی (بخش میانی کمان ماگمایی ارومیه-دختر در شمال شرق اصفهان) به طول حدود ۲۰۰ کیلومتر که در نوشته های علمی به چاپ رسیدهاند، جمع آوری شدند. از آنجایی که بررسی های پتروژنتیکی و تفکیک سنگهای آداکیتی از کالک آلکالن، بدون داشتن عناصر کمیاب غیرممکن است و همچنیین برای افزایش دقت بررسی ها و پردازش های آماری، تنها آنالیزهایی موردتوجه قرار گرفتند که دارای عناصر کمیاب سنجیدهشده با روش ICP-MS و همچنین موقعیت مشخص زمینی بودنـد. ایـن گزینش ها سبب شد تا تعداد نمونه ها از بیش از ۲۰۰ نمونه به ۹۹ نمونه تقلیل یابد. در ابتدا صرفنظر از ماهیت ژئوشیمیایی، کلیه نمونهها بر مبنای سه فاز اصلی آتشفشانی سنوزوئیک در سه گروه تقسیم شدند. سپس با طراحی یک نمودار جریانی، اقدام به تعیین سری ماگمایی هر کدام از نمونه ها شد تا وضعیت سری

فعالیتهای آتشفشانی سنوزوئیک در کمان ماگمایی ارومیه-دختر در سه برهه اصلى الوسن، اليگوسن- پليوسن و پليو-Dilek et al., 2010; Sayari,) كواترنر رخداده است 2015). كمان ماگمايي اروميه-دختر خود بخشي از يك ايالت ماگمایی وسیع است که حاصل هم گرایبی بین صفحه های آفريقا- عربي و اوراسيا است (Jackson and McKenzie, 1984; Dewey et al., 1986; McClusky et al., 2000; 2003; Allen et al., 2004; Dilek McClusky et al., and Sandvol, 2009). يژوهش های متعددی روی سنگ های ماگمایی کمان آتشفشانی ارومیه-دختر انجامشده است Amidi et al., 1984; Hassanzadeh, 1993; Aftabi) and Atapour, 2000; Dilek et al., 2010; Sayari et al., 2014; Sayari and Sharifi, 2016; Sayari and Sharifi, 2018). تا چند سال گذشته ولکانیسم ارومیه-دختر با سرى هاى غالب كالك آلكالن و بعضى موارد شوشونيتي مشخص می شد؛ اما در سال های اخیر به وجود نوع خاصی از ولكانيسم در بخش هايي از اين كمان ماكمايي يعنى ولكانيسم آداكيتي اشارهشده است (Ghadami et ; 2007; Ghadami et al., 2008; Omrani et al., 2008; Sayari, 2015; Sayari and Sharifi, 2018). از آنجا که منشأ ماگماتيسم كالك آلكالن، شوشونيتي و بهويژه آداكيت ها متفاوت است، تغييرات ماهيت ولكانيسم سنوزوئيك تا كواترنر ايران، كليد شناخت تحولات ژئوديناميک و تکتونوفيزيک ايران محسوب مي شود.

در روند تکامل علم پترولوژی، رفته رفته نقش ژئوشیمی پررنگ تر شده تا امروزه بررسی های ژئوشیمی بخش جدایی ناپذیر پژوهش های پترولوژی را تشکیل میدهد. تعبیر و تفسیرهای ژنتیکی ماگما، فرایندهای متحول کننده ترکیب ماگما و شناخت محیط تکتونوماگمایی، بدون داشتن آنالیزهای شیمیایی قابل اطمینان، امکان پذیر نیست. در این رهیافت هرچه تعداد آنالیزهای انجام شده معتبر با پراکندگی مناسب در منطقه بیشتر باشند، اطلاعات جامعتر و دقیق تری به دست می آید و نظریه ها مبنای علمی محکمتری خواهند داشت. با افزایش تعداد داده،

جدول ۱. آنالیز شیمیایی سنگ کل پایگاه داده مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر. اکسیدها برحسب درصد وزنی و سایر عناصر (Asadi et al., 2009) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (2009) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (2009) As (Pardfeshani, 2011) Fa (Movahedian Atar, Mov (Moradizadeh, 2012) Mor (Khodami, 2009) Kh (Jabbari, 2014) Ja (Fardfeshani, 2011) Fa (2008) Om (2008)

Table 1. Whole rock analyses of studied geodatabase from central part of the Urumieh-Dokhtar magmatic arc. Oxides in wt.%, and other elements in ppm are reported. Abbreviations are Ah (Ahmadvand, 2009), Am (Amoozad-khalili, 2009), As (Asadi et al., 2009), Fa (Fardfeshani, 2011), Ja (Jabbari, 2014), Kh (Khodami, 2009), Mor (Moradizadeh, 2012), Mov (Movahedian Atar, 2008), Om (Omrani et al., 2008), Ta (Tamizi, 2013), Sa (Sayari, 2015).

		W	hole rock	analayse	s related (to first vo	lcanic pul	lse (Eocen	e)		
Sample	SA7	BK14	BK15	BK18	BK2	ZF30	ZF40	ZF41	ZF43	ZF44	ZF46
Ref.	Ah	Am	Am	Am	Am	Fa	Fa	Fa	Fa	Fa	Fa
SiO ₂	51.6	64.79	61.53	70.42	67.67	67.87	71.99	65.4	71.36	73.28	71.54
TiO ₂	1.3	0.59	0.55	0.31	0.37	0.49	0.1	0.53	0.22	0.22	0.3
Al ₂ O ₃	17.98	16.81	16.24	14.51	13.16	16.19	15.02	16.82	15.54	13.72	15.33
Fe ₂ O ₃ *	10.60	4.77	4.43	3.35	2.50	3.75	2.93	6.32	2.94	2.59	2.58
MnO	0.108	0.07	0.08	0.04	0.06						
MgO	2.77	1.17	0.49	1	0.79	0.79	0.68	1.14	0.74	0.32	0.62
CaO	6.76	3	2.58	1.7	3.18	2.19	1.24	3.93	1.82	1.71	1.68
Na ₂ O	3.98	4.89	2.79	4.14	0.96	4.24	4.12	4.41	3.19	0.84	3.51
K ₂ O	3.79	3.75	8.33	3.65	7.88	3.91	3.55	1.24	3.59	6.51	4.01
P_2O_5	0.352	0.27	0.13	0.08	0.06	0.12	0.06	0.17	0.06	0.03	0.07
Со	24.9	3.9	1.6	4.4	2.9						
V	291										
Pb	35	14	12	19	7						
Rb	163.07	100.02	281.97	95.75	187.73	99.36	113.61	32.13	113.74	112.59	131.18
Ba	1210.1	1024.6	2792.7	1057.2	996.4	1062.8	1039.7	402.6	1017.2	799.6	1213.9
Sr	470.19	399.88	86.77	322.93	63.91	336.4	242.82	297.62	236.1	89.49	213.1
Та	0.69	1.25	1.58	0.81	1.82	0.69	0.71	0.56	0.87	0.7	0.88
Nb	8.71	19.27	21.65	9.36	23.88	10.24	8.48	8.56	10.98	7.42	11.63
Hf	3.94	8.11	11.17	4.14	10.58	5.16	3.75	4.62	4.5	3.39	5.67
Zr	152.5	398.5	454.7	170.7	405.2	215.7	151.4	190.2	185.4	1316	230.5
Y	33.67	24.13	43.21	16.77	43.48	31.69	15.37	39.66	16.68	16.21	23.07
Th	5.56	11.15	25.72	12.82	31.4	10.41	11.26	3.55	16.14	12.77	17.34
U	1.49	2.98	7.15	2.71	8.78	2.54	2.63	1	3.2	2.55	4.36
La	21.05	33.48	25.73	25.99	45.69	28.75	24.99	20.56	32.5	19.85	34.51
Ce	47.02	61.35	53.63	46.1	86.89	56.95	43.52	43.79	57.41	38.52	64.1
Pr	5.952	6.987	6.89	4.636	9.52	6.62	4.55	5.53	5.81	3.93	6.81
Nd	24.89	25.8	29.61	15.61	34.49	25.31	15.24	23.52	19.54	13.74	23.64
Sm	5.78	4.85	7.88	2.88	7.1	5.32	2.7	5.69	3.29	2.6	4.21
Eu	1.54	1.37	1.76	0.67	0.9	1.33	0.7	1.62	0.74	0.62	0.87
Gd	5.72	3.87	7.5	2.49	6.38	5.04	2.43	6.18	2.69	2.41	3.57
Tb	0.929	0.624	1.229	0.396	1.092	0.86	0.388	1.06	0.44	0.4	0.6
Dy	5.79	3.92	7.7	2.53	7.25	5.33	2.4	6.82	2.73	2.59	3.72
Но	1.25	0.84	1.55	0.58	1.55	1.13	0.53	1.45	0.57	0.54	0.79
Er	3.41	2.5	4.48	1.65	4.37	3.23	1.57	4.25	1.72	1.7	2.36
Tm	0.5	0.4	0.66	0.26	0.67	0.5	0.25	0.62	0.28	0.27	0.38
Yb	3.32	2.83	4.37	1.84	4.27	3.38	1.76	4.18	1.89	1.91	2.65
Lu	0.511	0.487	0.711	0.322	0.68	0.534	0.276	0.639	0.299	0.302	0.416

ادامه جدول ۱. آنالیز شیمیایی سنگ کل پایگاه داده مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر. اکسیدها برحسب درصد وزنی و سایر Asadi et al.,) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (andotade et al.,) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (andotade et al.,) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (andotade et al., 2014) Ja (Fardfeshani, 2011) Fa (2009) Fa (2009) Fa (2009) An (Atar, 2008) (andotade et al., 2008) An (Atar, 2008) Am (Atar, 2008) An (Atar, 2008) An (andotade et al., 2008) An (andotade et al., 2008) An (Atar, 200

Table 1 (Continued). Whole rock analyses of studied geodatabase from central part of the Urumieh-Dokhtar magmatic arc. Oxides in wt.%, and other elements in ppm are reported. Abbreviations are Ah (Ahmadvand, 2009), Am (Amoozad-khalili, 2009), As (Asadi et al., 2009), Fa (Fardfeshani, 2011), Ja (Jabbari, 2014), Kh (Khodami, 2009), Mor

(Moradiza	adeh, 2012), Mov (N	Iovahedia	n Atar, 20	08), Om (Omrani et	al., 2008)	, Ta (Tam	izi, 2013),	Sa (Saya	ri, 2015).
		W	hole rock	k analayse	s related	to first vo	lcanic pu	lse (Eocer	ne)		
Sample	ZF47	1.11	1.8	2.101	2.5	4.003	4.006	4.007	4.008	10	2TN 13
Ref.	Fa	Ja	Ja	Ja	Ja	Ja	Ja	Ja	Ja	Ja	Ja
SiO ₂	65.42	52.7	56.4	50.6	52.5	57.2	52.8	55	79.1	72.1	69.3
TiO ₂	0.81	0.78	0.82	1.23	1.2	0.61	1.58	0.71	0.52	0.29	0.64
Al ₂ O ₃	15.17	15.45	13.2	16.85	18.35	16.5	15.25	16.75	7.79	12.6	14.2
Fe ₂ O ₃ *	6.58	7.78	7.89	10	7.98	5.86	11.4	6.93	3.35	2.26	4.42
MnO		0.14	0.15	0.14	0.29	0.09	0.15	0.12	0.08	0.07	0.08
MgO	1.6	4.34	0.97	4.26	3.17	3.17	3.15	3.74	1.26	0.66	0.93
CaO	2.43	10.45	9.86	8.53	4.73	7.46	7.86	7.65	1.85	3.78	2.35
Na ₂ O	4.4	3.43	4.14	2.59	5.25	2.78	2.73	3.06	0.31	2.1	4.72
K ₂ O	3.31	0.76	0.91	1.22	1.08	1.37	0.6	1.16	1.67	2.05	1.46
P2O5	0.25	0.13	0.16	0.27	0.22	0.19	0.28	0.21	0.1	0.07	0.16
Cr		70	50	70	10	110	60	140	170	30	40
Ni		28	8	18	5	33	22	55	28	0	7
Со		21.5	13.7	25.4	18.9	16.6	28.1	21.2	5.1	2.4	3.9
Cu		13	22	39	5	45	177	0	21	6	0
Pb		0	6	15	8	19	10	23	249	22	7
Zn		76	48	101	114	68	119	148	690	37	53
Rb	70.69	17.5	17.3	35.6	23.8	25.2	15.8	22.8	65.7	67	46.5
Cs		0.35	0.65	1.38	4.89	1.65	1.39	0.61	3.88	21.4	1.95
Ba	1711.7	208	545	500	533	575	269	513	176.5	672	802
Sr	204.71	339	372	439	564	528	350	513	29.6	200	293
Та	0.82	0.3	0.3	0.3	0.5	0.4	0.5	0.4	0.8	0.7	0.8
Nb	13.74	4	4.6	5.5	7.5	6	7.8	5.7	10.3	8.5	13.4
Hf	5.78	1.8	2.1	2.8	3.8	3.2	4.5	3.1	12.3	4.6	6.3
Zr	232.7	59	75	97	130	117	146	111	470	168	219
Y	38.5	16.3	18.7	26.8	27.1	14.9	36.2	15.4	18.3	20.4	38.7
Th	10.83	1.97	2.38	2.98	4.36	6.47	4.08	4.68	7.65	8.65	8.45
U	2.74	0.63	0.53	0.79	1.19	2.03	1.27	1.49	1.99	2.5	2.07
La	35.38	7.8	9.9	16.2	18.6	21.1	18.2	17.8	31.2	19	30.4
Ce	72.05	16.1	21.3	34.5	37.7	40.7	38.4	35.1	65.6	39.5	62.8
Pr	8.61	2.17	2.72	4.45	4.67	4.78	5.14	4.24	7.63	4.1	7.55
Nd	33.83	9.5	12	18.8	19.6	17.8	22.7	16.5	28.2	15.8	30
Sm	7.13	2.32	2.99	4.81	4.58	3.5	5.82	3.61	5.42	3.37	6.64
Eu	1.65	0.86	0.92	1.46	1.25	0.98	1.58	1.09	1.17	0.72	1.61
Gd	6.69	2.54	3.17	4.74	4.63	3.06	5.7	3.22	4.25	3.21	6.46
Tb	1.11	0.45	0.53	0.81	0.79	0.46	1.04	0.5	0.61	0.54	1.11
Dy	6.72	2.83	3.18	4.94	4.91	2.71	6.55	2.84	3.33	3.36	6.76
Ho	1.41	0.61	0.71	1	1.02	0.52	1.33	0.53	0.64	0.68	1.43
Er	3.9	1.77	2.01	2.98	3.02	1.56	3.96	1.63	2.01	2.17	4.21
Tm	0.59	0.26	0.25	0.41	0.43	0.21	0.54	0.23	0.29	0.31	0.7
Yb	3.92	1.73	1.97	2.62	2.86	1.47	3.63	1.52	1.9	2.47	4.28
Lu	0.589	0.26	0.3	0.4	0.43	0.23	0.53	0.21	0.31	0.37	0.62

عناصر برحسب ppm ارائه شدهاند. اختصارها عبارتند از: Ahmadvand, 2009) Ah (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) ما ارائه شدهاند. اختصارها عبارتند از: Asadi et al., Movahedian) Mov (Moradizadeh, 2012) Mor (Khodami, 2009) Kh (Jabbari, 2014) Ja (Fardfeshani, 2011) Fa (2009) (Sayari, 2015) Sa (Tamizi, 2013) Ta (Omrani et al., 2008) Om (Atar, 2008

Table 1 (Continued). Whole rock analyses of studied geodatabase from central part of the Urumieh-Dokhtar magmatic arc. Oxides in wt.%, and other elements in ppm are reported. Abbreviations are Ah (Ahmadvand, 2009), Am (Amoozad-khalili, 2009), As (Asadi et al., 2009), Fa (Fardfeshani, 2011), Ja (Jabbari, 2014), Kh (Khodami, 2009), Mor (Moradizadeh, 2012), Mov (Movahedian Atar, 2008), Om (Omrani et al., 2008), Ta (Tamizi, 2013), Sa (Sayari, 2015).

		W	hole rock	k analayse	s related	to first vo	lcanic pu	lse (Eocen	e)		
Sample	B.56	B58-2	PF 01	QQ 02	A12	A19	A3	A33	A37	A39	A7
Ref.	Ja	Ja	Ja	Ja	Mor	Mor	Mor	Mor	Mor	Mor	Mor
SiO ₂	50.1	49.6	72.5	66.1	59.6	57.6	66	69.2	57.7	68.3	61.3
TiO ₂	1.08	1.09	0.17	0.41	0.52	0.57	0.49	0.4	0.56	0.68	0.64
Al ₂ O ₃	19.45	17.8	12.8	15.5	17.4	15.6	15.5	14.5	15.9	14.6	16.5
Fe ₂ O ₃ *	8.55	10.2	1.91	2.63	6.73	6.47	2.99	4.04	6.89	4.24	5.85
MnO	0.16	0.21	0.07	0.04	0.13	0.1	0.05	0.1	0.17	0.11	0.14
MgO	3.92	5.26	0.45	1.25	2.67	2.5	1.96	1.16	2.98	1.14	3.01
CaO	10	8.21	1.34	3.34	5.29	5.9	5.78	1.66	3.6	1.57	2
Na ₂ O	3.12	3.83	3.37	4.23	4.6	3.2	4.5	5.3	4.5	5.5	5
K ₂ O	0.81	0.51	4.11	2.36	0.86	0.99	0.15	1.72	1.9	2.57	0.62
P2O5	0.2	0.17	0.05	0.15	0.11	0.15	0.09	0.08	0.1	0.2	0.09
Cr	60	50	70	40	68	68	68	68	68	68	68
Ni	20	25	7	7	8	19	10	6	7	8	6
Со	22.9	30.2	2.3	5.4	12.8	13.7	6.3	5.9	15.6	3.5	11.9
Cu	16	13	5	23	169	146	30	9	7	156	37
Pb	6	8	14	13							
Zn	98	107	46	58	40	48	36	56	109	74	96
Rb	13.9	14.9	97.6	64.9	21.7	21.8	3.9	36.9	72.3	69.7	19.6
Cs	0.47	1.36	2.49	1.82	0.5	0.5	0.6	1.7	2.4	1.5	1.1
Ba	487	239	709	957	350	340	160	1300	290	880	120
Sr	439	473	78.5	5.5	450	600	740	520	230	220	450
Та	0.4	0.2	1.1	0.4	0.5	0.5	0.5	0.5	0.5	0.6	0.5
Nb	7.1	3.7	10.2	6.2	4	4	6	7	4	9	5
Hf	2.8	2.1	3.1	3.5	2	2	3	4	2	4	2
Zr	96	66	93	127	70	100	130	130	80	170	100
Y	24.1	21.7	23.5	5.7	20	10	20	20	20	30	20
Th	2.06	0.97	10.3	6.11	2.5	3.7	5.3	7.2	2.3	7.1	5.2
U	0.65	0.29	3.22	2.15	0.79	0.79	1.36	2.08	0.73	2.17	1.44
La	12	8.2	19.2	26.2	9.5	14.4	11.3	18.9	10.1	19.2	15.5
Ce	26	18.4	35.3	47.7	19.7	28.9	26.5	40.7	20.7	41.3	31.9
Pr	3.58	2.6	3.76	5.05	2.39	3.53	3.3	4.77	2.62	5.06	3.76
Nd	15.5	12.3	12.9	18.2	10.1	13.5	13.4	17.9	10.9	21.2	15
Sm	3.93	3.32	2.82	2.89	2.4	2.5	2.7	3.8	2.6	4.7	3.6
Eu	1.27	1.14	0.35	0.74	0.84	0.8	0.81	0.77	0.83	1.21	0.93
Gd	3.94	3.57	2.84	2.21	2.82	2.47	2.8	3.84	2.93	5.44	3.71
Tb	0.72	0.64	0.54	0.25	0.47	0.42	0.47	0.65	0.5	0.9	0.66
Dy	4.41	3.97	3.54	1.14	2.85	2.53	3.03	4.31	3.17	5.63	4.13
Ho	0.87	0.82	0.77	0.2	0.59	0.49	0.66	0.92	0.66	1.25	0.88
Er	2.59	2.43	2.46	0.53	1.88	1.4	1.92	2.73	1.88	3.48	2.57
Tm	0.37	0.32	0.38	0.07	0.28	0.22	0.3	0.45	0.27	0.54	0.38
Yb	2.48	2.24	2.7	0.46	1.7	1.5	2	2.9	1.8	3.5	2.4
Lu	0.35	0.33	0.43	0.07	0.24	0.2	0.3	0.46	0.27	0.53	0.34

ادامه جدول ۱. آنالیز شیمیایی سنگ کل پایگاه داده مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر. اکسیدها برحسب درصد وزنی و سایر Asadi et al.,) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (andotade et al.,) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (andotade et al.,) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (andotade et al., 2014) Ja (Fardfeshani, 2011) Fa (2009) Fa (2009) Fa (2009) An (Atar, 2008) (andotade et al., 2008) An (Atar, 2008) Am (Atar, 2008) An (Atar, 2008) An (andotade et al., 2008) An (andotade et al., 2008) An (Atar, 200

Table 1 (Continued). Whole rock analyses of studied geodatabase from central part of the Urumieh-Dokhtar magmatic arc. Oxides in wt.%, and other elements in ppm are reported. Abbreviations are Ah (Ahmadvand, 2009), Am (Amoozad-khalili, 2009), As (Asadi et al., 2009), Fa (Fardfeshani, 2011), Ja (Jabbari, 2014), Kh (Khodami, 2009), Mor (Moradizadeh, 2012), Mov (Movahedian Atar, 2008), Om (Omrani et al., 2008), Ta (Tamizi, 2013), Sa (Sayari, 2015).

		Who	le rock an	alayses r	elated to	first volca	anic pulse	e (Eocene))		
Sample	571-10	571-12	571-15	571-2	571-21	571-28	571-5	571-6	571-7	571-9	Q.10
Ref.	Mov	Mov	Mov	Mov	Mov	Mov	Mov	Mov	Mov	Mov	Om
SiO ₂	54.88	55.61	52.65	54.02	56.21	52.31	55.94	52.69	52.71	52.12	48.58
TiO ₂	0.76	0.71	0.81	1.07	0.66	0.79	0.86	0.81	0.80	0.90	1.43
Al ₂ O ₃	16.79	16.24	16.98	16.55	15.33	16.4	15.77	17.33	16.33	16.47	17.42
Fe ₂ O ₃ *	9.31	7.12	7.95	10.19	6.92	7.82	7.61	9.32	7.43	7.79	9.79703
MnO	0.16	0.14	0.170	0.19	0.14	0.13	0.14	0.17	0.13	0.11	0.13
MgO	4.56	6.25	6.21	5.15	5.13	6.26	4.54	6.17	6.33	5.84	3.79
CaO	7.78	6.97	8.07	5.48	6.59	7.51	6.83	10.13	7.28	8.1	10.19
Na ₂ O	2.69	3.06	2.31	3.8	2.87	2.63	3.28	2.27	2.75	2.85	3.39
K ₂ O	0.67	0.74	1.39	0.08	0.57	1.18	0.72	0.47	1.01	1.09	1.55
P2O5	0.12	0.18	0.14	0.28	0.17	0.25	0.21	0.15	0.24	0.25	0.67
Cr	85	103	97	56	98	114	84	107	149	176	114
Ni	3	42	11	3	30	46	10	11	83	87	36
Со	36	26	29	32	23	30	23	35	30	32	23
Cu	45	111	115	78	45	49	44	51	23	44	30
Pb	8	8	5	5	8	6	2	5	5	5	16
Zn	109	113	70	104	72	80	70	38	72	73	113
Rb	20.07	13.14	48.09	1.96	20.08	23.69	20.3	21.07	18.31	16.29	28.68
Cs	1.96	2.78	0.64	0.97	0.72	1.96	0.5	2.94	0.67	1.37	0.09
Ba	276.6	384.6	284.3	115.8	411.5	475.6	256.5	77.7	351.2	303.6	545
Sr	339.54	425.33	455.51	464.76	456.2	448.4	368.02	331.43	403.99	474.93	636
Та	0.31	0.5	0.35	0.38	0.48	0.57	0.56	0.27	0.9	0.77	1.7
Nb	4.34	7.57	4.99	6.4	7.11	9.78	8.73	3.21	13.49	13.04	27.84
Hf	2	3	1	1	3	3	3	1	2	2	3.23
Zr	69.1	72.4	82	93.3	101.6	97.5	96.5	12.2	85.8	95.9	126
Y	22.89	20.52	22.97	37.78	22.18	22.13	26.95	19.85	21.19	23.49	30
Th	2.54	1.33	2.58	0.88	2.13	1.34	1.78	1.27	1.55	1.31	3.94
U	0.8	0.41	0.82	0.29	0.66	0.41	0.63	0.3	0.54	0.44	2.04
La	9.04	15.73	10.45	14.72	16.9	17.67	13.71	7.09	15.98	15.38	29.89
Ce	19.41	31.64	22.75	32.71	33.24	36.51	29.88	15.65	32.23	31.8	56.44
Pr	2.557	3.818	2.908	4.38	4.007	4.47	3.849	2.112	3.87	3.882	6.79
Nd	11.5	15.69	12.79	20.3	16.22	18.2	16.04	9.68	16.03	16.56	27.6
Sm	3.07	3.47	3.23	5.22	3.6	3.97	3.93	2.61	3.67	3.75	6.02
Eu	1.01	1.14	0.98	1.72	1.12	1.26	1.21	0.9	1.16	1.26	1.9
Gd											5.54
Tb	4.22	2.00	4.05		4.00	1.00	4.00	2.60	4	4.20	0.8
Dy	4.33	3.89	4.25	6.66	4.08	4.26	4.99	3.69	4	4.29	5.02
HO											1.12
Er T											2./1
1 M Vh	0.27	1.00	2.22	2 40	2.27	216	2 (5	1.00	2.11	2.22	0.41
Y D	2.57	1.89	2.33	5.49	2.27	2.10	2.05	1.98	2.11	2.23	2.67
Lu	0.361	0.304	0.354	0.562	0.349	0.341	0.379	0.305	0.306	0.33	0.42

ادامه جدول ۱. آنالیز شیمیایی سنگ کل پایگاه داده مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر. اکسیدها برحسب درصد وزنی و سایر عناصر برحسب ppm ارائه شدهاند. اختصارها عبارتند از: Ahmadvand, 2009) Ah (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) ما ارائه شدهاند. اختصارها عبارتند از: Asadi et al., Movahedian) Mov (Moradizadeh, 2012) Mor (Khodami, 2009) Kh (Jabbari, 2014) Ja (Fardfeshani, 2011) Fa (2009)

(Sayari, 2015) Sa (Tamizi, 2013) Ta (Omrani et al., 2008) Om (Atar, 2008

Table 1 (Continued). Whole rock analyses of studied geodatabase from central part of the Urumieh-Dokhtar magmatic arc. Oxides in wt.%, and other elements in ppm are reported. Abbreviations are Ah (Ahmadvand, 2009), Am (Amoozad-khalili, 2009), As (Asadi et al., 2009), Fa (Fardfeshani, 2011), Ja (Jabbari, 2014), Kh (Khodami, 2009), Mor (Moradizadeh, 2012), Mov (Movahedian Atar, 2008), Om (Omrani et al., 2008), Ta (Tamizi, 2013), Sa (Sayari, 2015).

		W	hole rock	x analayse	s related	to first vo	lcanic pu	lse (Eocer	le)		
Sample	Q.12	Q.13	Q.20	A1	A11	A12	A15	A2	A5	A7	B13
Ref.	Ōm	Ôm	Ōm	Та	Та	Та	Та	Та	Та	Та	Та
SiO ₂	69.73	73.7	58.84	73.3	67	68.8	73.6	68.7	66.7	56.8	68.7
TiO ₂	0.5	0.19	0.66	0.17	0.58	0.43	0.29	0.18	0.51	0.84	0.33
Al ₂ O ₃	13.85	12.54	14.93	11.8	14.7	13.9	13.6	13.4	15.4	16.5	16.1
Fe ₂ O ₃ *	4.37	1.80	6.51	2.07	3.95	3.59	2.58	2.12	3.85	7.41	0.74
MnO	0.03	0.04	0.23	0.06	0.08	0.08	0.03	0.07	0.09	0.13	0.01
MgO	0.59	0.3	4.59	0.24	0.84	0.85	0.22	0.32	0.74	2.62	0.08
CaO	3.58	1.29	2.91	1.82	1.82	1.62	1	1.25	1.45	3.64	0.53
Na ₂ O	2.37	1.72	4.24	3.5	4.7	4.1	7.2	4.2	5.7	4.7	5.5
K ₂ O	3.53	5.78	2.89	4.09	3.56	3.95	0.24	3.15	3.32	3.45	5.38
P2O5	0.1	0.04	0.12	0.03	0.17	0.1	0.07	0.03	0.14	0.25	0.04
Cr	0	0	42	68.43	68.43	68.43	68.43	68.43	68.43	68.43	68.43
Ni	2	0	13	9	7	12	11	9	6	25	7
Со	3	1	16	1.6	2.7	4.7	2.6	1.3	2.7	18.4	0.5
Cu	4	2	2	19	10	92	23	51	11	78	9
Pb	8.26	5.96	14.28								
Zn	24	13	144	30	69	97	34	45	75	81	18
Rb	91.81	155.95	94.26	112	94.3	96.8	2.8	119	95.3	102	130
Cs	2.57	4.23	2.08	1.5	0.8	0.8	0.3	2.6	1	4.2	0.8
Ba	657	643	532	650	760	880	100	700	980	930	850
Sr	176	54	125	120	240	160	210	110	310	500	250
Та	1.09	1.7	0.54	0.9	1	1.2	1	1	1	0.5	1.4
Nb	12.58	15.84	6.72	12	16	16	13	13	13	8	18
Hf	7.93	4.11	4.13	4	5	5	4	4	5	3	6
Zr	256	120	168	160	210	240	180	180	220	140	260
Y	43	18	21	10	30	40	20	20	20	30	20
Th	12.98	18.26	6.12	9.4	7.6	10.9	9.2	10.9	10	4.4	13.1
U	3.53	3.46	1.61	2.31	2.31	3.57	2.4	2.62	2.54	1.05	3.79
La	23.42	36.46	16.32	22.6	27.1	39.5	23	27.1	28.2	18.7	43.1
Ce	49.23	59.23	32.62	41.7	53.9	73.3	43.5	47.7	55.9	39.1	83.5
Pr	6.09	5.86	3.87	4.45	6.43	8.17	4.72	5.2	6.22	4.78	8.79
Nd	25.42	19.67	15.35	14.7	24.5	29.3	16	17.3	22.6	19.1	29.7
Sm	6.01	3.32	3.41	2.8	5.2	5.2	2.9	3.2	4.2	4.4	5
Eu	1.24	0.52	1.05	0.41	1.25	0.99	0.61	0.49	1.05	1.18	0.93
Gd	6.02	2.79	3.12	2.44	5.08	5.12	2.64	2.8	4.31	4.73	4.03
Tb	1	0.43	0.51	0.44	0.84	0.85	0.47	0.46	0.72	0.8	0.6
Dy	6.86	2.73	3.27	2.48	4.96	5.32	2.73	2.85	4.32	5.1	3.26
Ho	1.57	0.67	0.72	0.55	1.04	1.18	0.57	0.61	0.96	1.08	0.66
Er	4.06	1.87	2.01	1.72	3.09	3.82	1.86	1.77	2.88	2.9	1.98
Tm	0.63	0.32	0.31	0.28	0.49	0.61	0.32	0.3	0.43	0.4	0.33
Yb	4.21	2.46	2.06	1.9	3.3	4.3	2.2	2.3	3.2	2.9	2.6
Lu	0.67	0.39	0.35	0.31	0.51	0.63	0.34	0.32	0.48	0.43	0.35

ادامه جدول ۱. آنالیز شیمیایی سنگ کل پایگاه داده مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر. اکسیدها برحسب درصد وزنی و سایر عناصر برحسب ppm ارائه شدهاند. اختصارها عبارتند از: Asadi et al.,) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah)، Asoki et al.,) As (Moozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (2012) Am (Movahedian) Mov (Moradizadeh, 2012) Mor (Khodami, 2009) Kh (Jabbari, 2014) Ja (Fardfeshani, 2011) Fa (2009) Fa

(Sayari, 2015) Sa (Tamizi, 2013) Ta (Omrani et al., 2008) Om (Atar, 2008

Table 1 (Continued). Whole rock analyses of studied geodatabase from central part of the Urumieh-Dokhtar magmatic arc. Oxides in wt.%, and other elements in ppm are reported. Abbreviations are Ah (Ahmadvand, 2009), Am (Amoozad-khalili, 2009), As (Asadi et al., 2009), Fa (Fardfeshani, 2011), Ja (Jabbari, 2014), Kh (Khodami, 2009), Mor (Moradizadeh, 2012), Mov (Movahedian Atar, 2008), Om (Omrani et al., 2008), Ta (Tamizi, 2013), Sa (Sayari, 2015).

		Whole	rock ana	layses re	lated to s	second vo	lcanic p	ulse (Olig	gocene-P	liocene)		
Sample	51	56	57	63	71	73	77	79a	83	SA17	SA18	SA22
Ref.	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Ah	Ah	Ah
SiO ₂	69.11	68.74	70.07	68.96	73.65	68.90	76.95	77.76	76.48	55.91	47.33	50.17
TiO ₂	0.39	0.38	0.40	0.45	0.23	0.26	0.15	0.14	0.21	0.86	0.80	1.32
Al ₂ O ₃	13.83	13.97	12.95	13.00	13.04	13.70	11.89	12.55	13.51	17.01	13.19	16.66
Fe ₂ O ₃ *	2.89	2.87	2.95	2.67	2.40	2.37	1.05	0.62	0.80	8.78	10.97	8.92
MnO	0.05	0.06	0.03	0.04	0.02	0.05	0.00	0.00	0.00	0.11	0.16	0.13
MgO	0.48	0.61	0.15	0.32	0.39	0.39	0.17	0.09	0.18	3.98	12.11	6.90
CaO	2.27	2.39	1.96	2.87	0.70	3.14	0.36	0.51	0.16	6.80	9.63	10.33
Na ₂ O	4.18	4.21	4.45	5.70	3.26	5.40	2.33	1.37	1.16	3.40	2.55	3.62
K ₂ O	4.92	4.76	4.81	3.52	4.77	3.95	5.65	5.99	5.61	1.95	1.64	1.11
P_2O_5	0.09	0.08	0.10	0.08	0.06	0.07	0.02	0.02	0.02	0.30	0.33	0.66
Cr	3	3	3	3	4	3	2	3	3			
Ni	6.72	7	6	8	7	9	6	6	5			
Со	5.236	5.6	4.3	4.9	4.3	6.2	0.7	1	1.1	24.8	52.1	31.8
Cu	14.684	14.6	14.9	21.6	22.9	16.4	19.7	22.8	37.2			
Pb	10.888	11	10.6	22.5	29.8	14.9	3.5	4.2	10.4	10	7	6
Zn	95.868	97.8	90.9	74.7	100	75	53.7	65.6	71.2			
Rb	194.68	200	181	91.7	187	111	195	202	182	45.65	29.82	20.54
Cs	6.44	5.6	8.6	2.9	6.7	1.1	1.8	2.5	7.4			
Ba	1262.4	1240	1320	785	1160	941	828	996	1110	435	432.5	452.6
Sr	117.64	121	109	207	174	163	138	36.7	23.1	430.61	534.1	896.66
Та	0.7496	0.73	0.8	0.82	0.61	0.6	1.53	1.2	1.78	0.84	0.57	1.06
Nb	10.464	10.1	11.4	11.5	7.2	7.5	14.4	12.3	16.9	11.86	6.4	15.62
Hf	1.994	1.84	2.39	4.65	2.06	1.31	4.46	3.16	3.93	3.19	3.17	3.97
Zr	46.2	42	57	112	49	36	104	81	94	138.2	131.9	184.7
Y	30.328	31	28.6	25.2	17.6	13.1	15.3	11.6	23.5	22.93	22.79	23.96
Th	9.7512	9.74	9.78	9.32	11.1	7.74	17.5	12	17.4	4.55	5.08	6.22
U										1.18	1.17	1.43
La	24.384	24.3	24.6	18.8	24.4	16.4	16.7	25.9	36.2	22	24.94	47.06
Ce	17.2	45.8	45.7	36.5	41.6	28.2	32.1	47.9	59.5	43.77	56.61	99.95
Pr	5.5976	5.62	5.54	4.56	4.31	2.46	3.37	4.62	6.86	5.146	6.905	11.905
Nd	20.488	20.6	20.2	17.4	14.2	8.06	10.8	14.6	22.2	20.73	29.04	47.12
Sm	4.258	4.37	3.97	3.75	2.53	1.52	1.87	2.44	3.81	4.27	6.44	8.25
Eu	1.4192	1.45	1.34	1.02	0.87	0.6	0.49	0.62	0.87	1.28	1.72	2.39
Gd	4.946	4.96	4.91	3.9	3.9	2.69	2.67	3.66	5.32	3.98	5.46	5.96
Tb	0.812	0.84	0.74	0.71	0.47	0.3	0.33	0.35	0.64	0.629	0.784	0.813
Dy	4.8528	5.06	4.32	4.1	2.76	1.88	2.13	1.97	3.61	3.92	4.3	4.58
Ho	1.018	1.06	0.91	0.87	0.58	0.42	0.51	0.4	0.78	0.84	0.81	0.9
Er	3.1096	3.23	2.8	2.66	1.79	1.3	1.82	1.35	2.45	2.31	2.01	2.27
Im	0.4904	0.51	0.44	0.43	0.29	0.22	0.33	0.25	0.42	0.34	0.27	0.32
Yb	3.2844	3.43	2.91	2.79	2	1.59	2.44	1.79	2.91	2.16	1.64	2.01
Lu	0.4788	0.49	0.45	0.44	0.3	0.25	0.4	0.3	0.48	0.357	0.25	0.307

ادامه جدول ۱. آنالیز شیمیایی سنگ کل پایگاه داده مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر. اکسیدها برحسب درصد وزنی و سایر عناصر برحسب ppm ارائه شدهاند. اختصارها عبارتند از: Ahmadvand, 2009) Ah (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) ما ارائه شدهاند. اختصارها عبارتند از: Asadi et al., Movahedian) Mov (Moradizadeh, 2012) Mor (Khodami, 2009) Kh (Jabbari, 2014) Ja (Fardfeshani, 2011) Fa (2009) (Sayari, 2015) Sa (Tamizi, 2013) Ta (Omrani et al., 2008) Om (Atar, 2008

Table 1 (Continued). Whole rock analyses of studied geodatabase from central part of the Urumieh-Dokhtar magmatic arc. Oxides in wt.%, and other elements in ppm are reported. Abbreviations are Ah (Ahmadvand, 2009), Am (Amoozad-khalili, 2009), As (Asadi et al., 2009), Fa (Fardfeshani, 2011), Ja (Jabbari, 2014), Kh (Khodami, 2009), Mor (Moradizadeh, 2012), Mov (Movahedian Atar, 2008), Om (Omrani et al., 2008), Ta (Tamizi, 2013), Sa (Sayari, 2015).

		Whole	rock ana	layses rela	ated to thi	rd volcan	ic pulse (l	Plio-Quat	ernary)		
Sample	10	17	20	KAF-022	2 KAF-042	KAF-047	' KAF-143	KAF-188	KAF-206	KAI-020	KAI-021
Ref.	Sa	Sa	Sa	As	As	As	As	As	As	As	As
SiO ₂	71.19	68.91	69.95	67.74	64.68	66.46	63.40	63.76	64.65	64.20	70.85
TiO ₂	0.26	0.35	0.30	0.38	0.50	0.43	0.56	0.51	0.45	0.59	0.43
Al ₂ O ₃	14.57	15.67	14.38	16.81	17.06	16.29	17.63	17.23	18.44	18.95	15.33
Fe ₂ O ₃ *	1.66	2.07	1.93	2.44	3.75	3.71	4.60	4.86	3.28	4.25	2.69
MnO	0.02	0.02	0.02	0.03	0.09	0.05	0.07	0.08	0.05	0.09	0.06
MgO	0.68	0.89	0.89	1.28	1.78	1.44	1.97	1.71	1.94	0.57	0.43
CaO	2.84	2.52	3.37	2.09	3.52	3.28	3.29	3.67	2.83	1.63	2.02
Na ₂ O	4.68	4.33	4.18	4.31	4.40	4.26	4.52	4.02	4.39	4.35	4.27
K ₂ O	2.32	2.72	2.52	2.76	1.96	1.90	1.67	1.96	1.77	3.13	1.73
P_2O_5	0.09	0.09	0.09	0.16	0.24	0.17	0.28	0.21	0.20	0.25	0.19
Cr	5	5	5	9	10	10	26	77	39	21	24
Ni	9	9	10	7	10	3	16	25	12	9	9
Со	5	5.7	6.1	8	11	10	13	15	9	11	7
Cu	46.7	28.7	22.8	6	35	343	116	364	110		
Pb	17	27	19	52	37	7	28	26	15	125	108
Zn	74.9	164	85	158	144	74	146	106	62	233	180
Rb	98.2	108	107	98	65	58	67	60	48	141	103
Cs	3.6	4.6	2.7	2	1.9	2	1.9	1.9	2.4	1.5	1.8
Ba	824	916	845	1006	769	814	686	872	1176	993	327
Sr	404	387	436	336	506	414	489	480	487	266	241
Та	0.38	0.46	0.42							1.0	
Nb	4.9	5.7	5.3	14	16	13	16	13	14	10	8
Hf	3.34	4.46	2.22	110	~~		~~	~~	•		-
Zr	80	115	49	119	25	33	25	22	28	57	50
Y	4.95	6.06	4.41	15.0	9	6	10	10	9	9	8
Th	7.78	9.15	7.54	15.9	14.6	12.8	13.6	13.7	16.7	14.7	9.3
U	24	067	26.4	2.9	2.9	2.6	2.7	2.6	2.6	2.6	2.5
La	24 41	26.7	20.4 45 7	26	20	21	28 51	28	51	50 51	24 40
Ce D-	41	40.7	45.7	40	47	38	51	47	52	51	40
PT NJ	4.49	3.21 17.2	3.13								
ING S-m	14.8	17.2	1/.1								
5111 E-1	2.37	2.00	2.01								
Eu Cd	2.25	0.09	0.91								
Gu Th	0.26	0.2	0.25								
	0.20	0.5	0.23								
ру По	1.12 0.17	0.22	0.15								
HU Fr	0.17	0.22	0.15								
Tm	0.41	0.04	0.57								
T III Vh	0.00	0.08	0.05	1	11	00	12	12	11	11	1
Lu	0.13	0.08	0.05	1	1.1	0.7	1.4	1.4	1.1	1.1	1

ادامه جدول ۱. آنالیز شیمیایی سنگ کل پایگاه داده مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر. اکسیدها برحسب درصد وزنی و سایر Asadi et al.,) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (andotade et al.,) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (andotade et al.,) As (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) Ah (andotade et al., 2014) Ja (Fardfeshani, 2011) Fa (2009) Fa (2009) Fa (2009) An (Atar, 2008) (andotade et al., 2008) An (Atar, 2008) Am (Atar, 2008) An (Atar, 2008) An (andotade et al., 2008) An (andotade et al., 2008) An (Atar, 200

Table 1 (Continued). Whole rock analyses of studied geodatabase from central part of the Urumieh-Dokhtar magmatic arc. Oxides in wt.%, and other elements in ppm are reported. Abbreviations are Ah (Ahmadvand, 2009), Am (Amoozad-khalili, 2009), As (Asadi et al., 2009), Fa (Fardfeshani, 2011), Ja (Jabbari, 2014), Kh (Khodami, 2009), Mor (Moradizadeh, 2012), Mov (Movahedian Atar, 2008), Om (Omrani et al., 2008), Ta (Tamizi, 2013), Sa (Sayari, 2015).

		Whole ro	ck analay	ses relate	ed to third	l volcani	c pulse (Pl	io-Quate	rnary)		
Sample	ZF33	ZF34	ZF42	4.05	4.06	4.07	QM 03	AR2	CN3	CN4	CN5
Ref.	Fa	Fa	Fa	Ja	Ja	Ja	Ja	Kh	Kh	Kh	Kh
SiO ₂	64.74	67.4	66.8	62	71.2	62.5	69.2	59.01	64.54	61.55	59.26
TiO ₂	0.51	0.34	0.43	0.56	0.25	0.54	0.25	0.59	0.43	0.51	0.42
Al ₂ O ₃	16.68	16.24	16.95	16.3	15.05	16.45	15.05	17.07	14.95	16.2	16.31
Fe ₂ O ₃ *	5.19	3.62	3.5	4.61	1.79	4.52	1.75	8.21	4.26	5.81	6.23
MnO				0.04	0.03	0.06	0.03	0.09	0.15	0.09	0.18
MgO	2.01	1.43	1.62	1.67	0.65	1.93	0.67	2.5	0.8	2.4	2.06
CaO	4.84	3.81	3.62	5.36	2.85	5.69	3.74	6.11	4.27	4.95	4.61
Na ₂ O	3.39	3.88	4.03	4.02	4.29	4.16	4.23	3.6	3.4	3.81	4.27
K ₂ O	2.06	2.91	2.16	2.33	2.42	2.33	2.39	1.49	2.61	2.69	2.53
P2O5	0.17	0.213	0.196	0.25	0.07	0.24	0.08	0.22	0.17	0.21	0.2
Cr				40	40	80	30	34	7	34	21
Ni				11	6	19	17	21	7	12	11
Со				9.6	3.1	11.6	3.1	17.4	6	14	12
Cu				22	5	27	12				
Pb				22	15	24	16	43	33	40	180
Zn				83	33	74	91	131	166	104	412
Rb	51.4	82.45	78.95	66.1	83.3	56.1	81.5	37.5	78	83	80
Cs				3.42	2.56	1.94	3.11	3.1	3	1.3	1.2
Ba	885.3	815.8	856.3	1430	762	1610	761	470.8	1201	1284	1056
Sr	695.08	542.04	535.7	712	370	755	366	559	484	934	720
Та	0.41	0.53	0.58	0.9	0.4	0.9	0.4	0.4	1.9	0.9	0.6
Nb	5.46	8.13	8.39	11.7	4.7	12.4	4.6	3.9	9.5	9	7
Hf	2.75	2.87	3.94	3.8	3.5	4.1	3.4	2.6	4.4	4.4	3.6
Zr	109.9	169.7	174.6	135	127	146	127	94	168	162	140
Y	9.86	7.58	8.55	10.4	5.4	9.9	5.7	13	11.6	16	13.8
Th	10.02	11.38	11.37	29.3	8.21	29.3	8.25	3.4	23	20	15
U	2.79	3.95	3.86	10.8	2.96	10	2.97	1.2	7.5	7	4.5
La	27.07	25.01	25.93	48	22.7	53.1	23	15	43	45	34
Ce	48	47.46	49.95	82	40.8	91	40.5	28	77	80	63
Pr	5.31	5.38	5.72	8.71	4.26	9.47	4.23	3.22	6.2	8	6.6
Nd	18.79	19.37	20.76	29.9	14.3	32.9	14.2	12.5	25.7	29.1	24.4
Sm	3.21	3.3	3.62	4.73	2.39	5.04	2.44	2.7	3.5	4.3	4.2
Eu	0.9	0.9	0.97	1.21	0.62	1.23	0.61	0.83	0.93	1.27	1.1
Gđ	2.45	2.33	2.61	3.78	1.89	3.89	1.98	2.5	2.2	3	2.9
	0.34	0.3	0.34	0.45	0.22	0.45	0.23	0.41	0.34	0.48	0.43
Dy	1.85	1.5	1./4	2.19	1.09	2.07	1.12	2.01	1.92	2.13	2.62
H0 E-	0.35	0.26	0.3	0.38	0.19	0.35	0.19	0.45	0.37	0.56	0.49
Er Tm	0.95	0.00	0.70	1.03	0.52	1.02	0.55	1.15	1.09	1.40	1.22
I M VL	0.14	0.09	0.1	0.15	0.07	0.15	0.07	0.2	0.15	0.23	0.2
1 D T	0.94	0.5/	0.07	0.93	0.44	0.81	0.40	1.14	1.15	1.42	1.51
LU	0.157	0.08	0.097	0.15	0.07	0.12	0.07	0.10	0.19	0.25	0.22

عناصر برحسب ppm ارائه شدهاند. اختصارها عبارتند از: Ahmadvand, 2009) Ah (Amoozad-khalili, 2009) Am (Ahmadvand, 2009) ما ارائه شدهاند. اختصارها عبارتند از: Asadi et al., Movahedian) Mov (Moradizadeh, 2012) Mor (Khodami, 2009) Kh (Jabbari, 2014) Ja (Fardfeshani, 2011) Fa (2009) (Sayari, 2015) Sa (Tamizi, 2013) Ta (Omrani et al., 2008) Om (Atar, 2008

Table 1 (Continued). Whole rock analyses of studied geodatabase from central part of the Urumieh-Dokhtar magmatic arc. Oxides in wt.%, and other elements in ppm are reported. Abbreviations are Ah (Ahmadvand, 2009), Am (Amoozad-khalili, 2009), As (Asadi et al., 2009), Fa (Fardfeshani, 2011), Ja (Jabbari, 2014), Kh (Khodami, 2009), Mor (Moradizadeh, 2012), Mov (Movahedian Atar, 2008), Om (Omrani et al., 2008), Ta (Tamizi, 2013), Sa (Sayari, 2015).

		Whole roo	k analays	es related t	to third vo	lcanic puls	e (Plio-Qu	aternary)		
Sample	CN6	DH4	DH7	EM1	JS13	MAG	OG4	RS2	SK1	T04
Ref.	Kh	Kh	Kh	Kh	Kh	Kh	Kh	Kh	Kh	Kh
SiO ₂	66.38	64.56	65.06	67.56	57.83	65.28	61.51	65.32	54.78	55.72
TiO ₂	0.28	0.49	0.45	0.37	0.56	0.49	0.53	0.44	0.74	0.61
Al ₂ O ₃	14.57	15.77	15.4	15.24	17.43	15.78	15.57	15.9	16.6	18.28
Fe ₂ O ₃ *	4.71	5.41	3.89	3.73	7.49	4.16	6.49	3.59	10.16	8.6
MnO	0.03	0.06	0.04	0.05	0.11	0.05	0.11	0.03	0.13	0.12
MgO	0.64	1.36	1	1.13	2.71	1.62	2.26	1.55	3.28	3.58
CaO	3.51	4.23	5.21	3.54	6.07	4.12	4.97	3.9	7.84	7.65
Na ₂ O	3.36	4.07	4.1	4.05	3.35	4.09	3.49	4.13	3.36	2.84
K ₂ O	2.97	2.26	2.31	2.45	2.56	2.44	1.71	2.62	1.1	1.73
P ₂ O ₅	0.15	0.21	0.21	0.14	0.27	0.22	0.18	0.25	0.35	0.23
Cr	14	27	20.5	20	20.5	27.3	20.5	20.5	96	34
Ni	10	18	9.8	9	13	18	8.1	11	30	16
Со	5	10.4	8.7	7	17.5	9	13.4	8.3	23	20
Pb	20	75	33	29	224	33	64	12	46	56
Zn	106	198	150	160	322	248	257	86	256	304
Rb	84	59.1	65.6	81	68.7	64	45	82.8	33.3	47.5
Cs	2.5	2.1	1.7	2	3	2	1	3.2	0.8	0.8
Ba	1110	950	770.2	870	655.7	752.7	457.2	772	482.7	518
Sr	494	597	554	513	1039	551	341	145	614	968
Та	1	0.6	0.8	0.5	0.8	1.8	0.5	0.5	0.9	0.5
Nb	9.6	7.3	6.8	6	6.8	7.1	4	7.7	7.6	5.3
Hf	4.8	3.7	3.5	3.8	3.4	3.7	3.1	4	3.1	2.9
Zr	174	134	129	137	107	124	92	144.7	122	105
Y	9.7	6.9	8	7.4	19.5	7.5	23.1	8.4	25.1	14.1
Th	27	9.6	9.1	12	8.3	12.6	3.3	10.9	3.2	4.5
U	7.6	3.3	3.9	3.3	2	3.6	0.8	4.2	0.9	1.4
La	46	27	26	27	19	25	15	26	22	14
Ce	82	51	48	51	40	48	31	48	44	30
Pr	8	5.47	5.14	5	4.68	4.86	3.9	5.48	5.37	3.5
Nd	25.8	20.7	18.2	19.8	18.7	19.9	15.5	19.7	21.4	15.3
Sm	3.3	3.1	3	3	3.8	3.1	3.6	3.3	4.6	3.2
Eu	0.78	0.91	0.82	0.77	1.05	0.8	0.95	0.89	1.34	0.94
Gd	1.9	1.99	2	2	3.5	1.9	3.6	2.4	4.2	2.7
Tb	0.31	0.26	0.3	0.26	0.5	0.31	0.59	0.34	0.7	0.45
Dy	1.81	1.23	1.57	1.25	3.15	1.35	3.85	1.64	4.04	2.46
Ho	0.31	0.19	0.28	0.24	0.63	0.25	0.76	0.26	0.82	0.47
Er	0.93	0.53	0.72	0.58	1.73	0.74	2.46	0.63	2.44	1.36
1m	0.16	0.09	0.11	0.11	0.26	0.09	0.35	0.12	0.35	0.24
Yb	1.12	0.5	0.66	0.64	1.76	0.61	2.47	0.61	2.3	1.21
Lu	0.14	0.08	0.09	0.1	0.28	0.1	0.4	0.1	0.35	0.2

172

منبع ارائه شده است. برای سهولت در پردازش اطلاعات، کلیه داده ها صرفنظر از موقعیت مکانی آنها، در سه گروه ائوسن، الیگوسن-پلیوسن و پلیوسن-کواترنر تقسیم بندی شدند. این دسته بندی مطابق با فازهای اصلی ولکانیسم سنوزوئیک ارومیه-دختر و ایالت ماگمایی شمال زمین درز زاگرس-بیتلیس انتخاب شده است.

موقعیت مکانی پایگاه دادههای ژئوشیمی در شکل ۱ نشان داده شده است. متأسفانه دادههای سن مطلق و دقیق چندانی از سنگ های آتشفشانی مورد بررسی در دست نیست و این سنگها اغلب بر اساس سن نسبی در نقشههای زمین شناسی ارائه شدهاند. در جدول ۲، نام و مختصات محل نمونهها، نام نقشه زمین شناسی با مقیاس ۱:۱۰۰۰۰۰ مربوطه، سن و فاز آتشفشانی آنها به همراه

شکل ۱. توزیع مکانی پایگاه داده ژئوشیمی مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر. اختصار منابع مطابق با جدول ۱ است. Fig. 1. Spatial distribution of the studied geochemistry database from central part of the Urumieh-Dokhtar magmatic arc. Abbreviations of references are the same as Table 1.

جدول ۲.اطلاعات پایگاه داده ژئوشیمی مورد استفاده در بخش میانی کمان ماگمایی ارومیه-دختر. اختصار منابع مطابق با جدول ۱ است. **Table 2.** Information of the studied geochemistry database from central part of the Urumieh-Dokhtar magmatic arc. Abbreviations of references are the same as Table 1.

G			Coordi	inate		Geology	A (*	
Sample	Refrence	Geogr	raphic	UTM (Z	Zone 39N)	map	Age (in	group
name		N	Ē	Х	Y	1:100000	geology map)	
10	Sa	33.6086	51.3626	533638	3718819	Kashan	Pliocene	3
17	Sa	33.61412	51.37014	534336	3719433	Kashan	Pliocene	3
20	Sa	33.61542	51.38024	535272	3719580	Kashan	Pliocene	3
51	Sa	33.1811	52.31836	622908	3672138	Ardestan	Oligocene	2
56	Sa	33.22026	52.33279	624198	3676497	Ardestan	Oligocene	2
57	Sa	33.21959	52.36483	627185	3676461	Ardestan	Oligocene	2
63	Sa	33.16967	52.49679	639562	3671095	Shahrab	Miocene	2
71	Sa	33.09893	52.53855	643571	3663308	Shahrab	Miocene	2
73	Sa	33.12379	52.55789	645335	3666090	Shahrab	Miocene	2
77	Sa	33.28431	52.07061	599692	3683318	Ardestan	Oligocene	2
79a	Sa	33.29487	52.04034	596862	3684460	Ardestan	Oligocene	2
83	Sa	33.30172	52.02889	595788	3685209	Ardestan	Oligocene	2
SA17	Ah	33.11244	52.64284	653281	3664953	Shahrab	Oligocene	2
SA18	Ah	33.11338	52.53124	642866	3664899	Shahrab	Oligocene	2
SA22	Ah	33.04442	52.62979	652180	3657392	Shahrab	Oligocene	2
SA7	Ah	33.27074	52.52519	642047	3682339	Shahrab	Eocene	1
BK14	Am	33.15369	52.67738	656430	3669578	Shahrab	Eocene	1
BK15	Am	33.24268	52.55418	644793	3679268	Shahrab	Eocene	1
BK18	Am	33.13409	52.60611	649817	3667301	Shahrab	Eocene	1
BK2	Am	33.21859	52.71084	659434	3676825	Shahrab	Eocene	1
KAF-022	As	32.9333	52.4836	638702	3644869	Kuhpayeh	Pliocene	3
KAF-042	As	32.93286	52.47511	637909	3644809	Kuhpayeh	Pliocene	3
KAF-047	As	32.934	52.47713	638096	3644938	Kuhpayeh	Pliocene	3
KAF-143	As	32.92917	52.47377	637790	3644398	Kuhpayeh	Pliocene	3
KAF-188	As	32.92535	52.45397	635944	3643949	Kuhpayeh	Pliocene	3
KAF-206	As	32.92365	52.44997	635573	3643755	Kuhpayeh	Pliocene	3
KAI-020	As	32.93433	52.48352	638693	3644983	Kuhpayeh	Pliocene	3
KAI-021	As	32.93402	52.48332	638675	3644948	Kuhpayeh	Pliocene	3
ZF30	Fa	32.86228	52.60218	649909	3637157	Kajan	Eocene	1
ZF33	Fa	32.69753	52.76353	665313	3619131	Kajan	Pliocene	3
ZF34	Fa	32.70721	52.84436	672872	3620333	Kajan	Pliocene	3
ZF40	Fa	32.85996	52.64907	654301	3636968	Kajan	Eocene	1
ZF41	Fa	32.86763	52.54525	644574	3637671	Kajan	Eocene	1
ZF42	Fa	32.70287	52.86195	674529	3619880	Kajan	Pliocene	3
ZF43	Fa	32.79918	52.7344	662397	3630356	Kajan	Eocene	1
ZF44	Fa	32.75193	52.8982	677830	3625380	Kajan	Eocene	1
ZF46	Fa	32.84202	52.6867	657854	3635034	Kajan	Eocene	1
ZF47	Fa	32.82002	52.73267	662196	3632664	Kajan	Eocene	1
1.11	Ja	33.11028	52.22986	614749	3664185	Ardestan	Eocene	1
1.8	Ja	33.10478	52.23328	615075	3663579	Ardestan	Eocene	1
10	Ja	32.89071	52.67709	656869	3640418	Kajan	Eocene	1
2.101	Ja	33.25797	52.11922	604250	3680445	Ardestan	Eocene	1
2.5	Ja	33.262	52.12581	604859	3680898	Ardestan	Eocene	1
2TN 13	Ja	33.39106	51.84536	578621	3694960	Tara	Eocene	1

زمين شناسي اقتصادى

Sampla			Coordi	inate		Coology mor	A go (in	
Sample	Refrence	Geogr	aphic	UTM (Z	Lone 39N)	-Geology map	Age (III	group
name		Ν	Ē	X	Y	1:100000	geology map)	
4.003	Ja	33.58425	51.45358	542091	3716152	Kashan	Eocene	1
4.006	Ja	33.59828	51.52444	548658	3717739	Natanz	Eocene	1
4.007	Ja	33.59547	51.60164	555822	3717466	Natanz	Eocene	1
4.008	Ja	33.58597	51.65167	560471	3716441	Natanz	Eocene	1
4.05	Ja	33.60378	51.3465	532146	3718279	Kashan	Pliocene	3
4.06	Ja	33.60569	51.35931	533334	3718495	Kashan	Pliocene	3
4.07	Ja	33.60603	51.35928	533331	3718532	Kashan	Pliocene	3
B.56	Ja	33.26792	52.23817	615317	3681672	Ardestan	Eocene	1
B58-2	Ja	33.35036	52.18136	609923	3690752	Ardestan	Eocene	1
PF 01	Ja	33.16147	52.44761	634989	3670121	Ardestan	Eocene	1
QM 03	Ja	33.61483	51.37375	534670	3719513	Kashan	Pliocene	3
QQ 02	Ja	33.75578	51.45647	542275	3735171	Kashan	Eocene	1
AR2	Kh	32.74288	52.71723	660890	3624087	Kajan	Pliocene	3
CN3	Kh	33.64221	51.25527	523672	3722515	Kashan	Pliocene	3
CN4	Kh	33.60699	51.26653	524726	3718612	Kashan	Pliocene	3
CN5	Kh	33.6313	51.26063	524172	3721307	Kashan	Pliocene	3
CN6	Kh	33.61914	51.26707	524773	3719960	Kashan	Pliocene	3
DH4	Kh	32.7242	52.76966	665838	3622097	Kajan	Pliocene	3
DH7	Kh	32.72865	52.79238	667959	3622627	Kajan	Pliocene	3
EM1	Kh	33.568	51.34563	532079	3714312	Kashan	Pliocene	3
JS13	Kh	32.69511	52.72657	661852	3618806	Kajan	Pliocene	3
MAG	Kh	32.66985	52.73782	662952	3616022	Kajan	Pliocene	3
OG4	Kh	32.65397	52.8668	675080	3614467	Kajan	Pliocene	3
RS2	Kh	32.69702	52.75289	664316	3619058	Kajan	Pliocene	3
SK1	Kh	32.6909	52.79071	667873	3618438	Kajan	Pliocene	3
T04	Kh	32.71762	52.69367	658727	3621251	Kajan	Pliocene	3
A12	Mor	33.58967	51.62564	558053	3716836	Natanz	Eocene	1
A19	Mor	33.58767	51.63053	558508	3716617	Natanz	Eocene	1
A3	Mor	33.58514	51.62783	558260	3716335	Natanz	Eocene	1
A33	Mor	33.59594	51.61325	556899	3717525	Natanz	Eocene	1
A37	Mor	33.59667	51.61417	556984	3717606	Natanz	Eocene	1
A39	Mor	33.59753	51.61383	556953	3717701	Natanz	Eocene	1
A7	Mor	33.58842	51.62667	558149	3716698	Natanz	Eocene	1
571-10	Mov	32.87949	52.38186	629268	3638773	Kuhpayeh	Eocene	1
571-12	Mov	32.8752	52.36145	627364	3638273	Kuhpayeh	Eocene	1
571-15	Mov	32.96115	52.49355	639589	3647970	Kuhpayeh	Eocene	1
571-2	Mov	32.93168	52.33874	625161	3644508	Kuhpayeh	Eocene	1
571-21	Mov	32.99825	52.39031	629885	3651951	Kuhpayeh	Eocene	1
571-28	Mov	32.97217	52.3275	624053	3648984	Kuhpayeh	Eocene	1
571-5	Mov	32.91671	52.35742	626928	3642871	Kuhpayeh	Eocene	1
571-6	Mov	32.92474	52.36729	627839	3643773	Kuhpayeh	Eocene	1
571-7	Mov	32.92965	52.37122	628200	3644322	Kuhpayeh	Eocene	1
571-9	Mov	32.91298	52.37763	628824	3642482	Kuhpayeh	Eocene	1
Q.10	Om	33.798	51.723	566926	3739994	Natanz	Eocene	1

			Coordi	nate		Geology	• (•	
Sample	Refrence	Geog	raphic	UTM (Z	Lone 39N)	map	Age (in	group
name		Ν	Ε	Х	Y	1:100000	geology map)	
Q.12	Om	33.686	51.615	557002	3727511	Natanz	Eocene	1
Q.13	Om	33.554	51.887	582339	3713058	Natanz	Eocene	1
Q.20	Om	33.181	52.445	634715	3672283	Ardestan	Eocene	1
A1	Та	32.98981	52.93919	681186	3651827	Kajan	Eocene	1
A11	Та	32.99917	52.92761	680085	3652845	Kajan	Eocene	1
A12	Та	32.99994	52.92539	679876	3652927	Kajan	Eocene	1
A15	Та	32.99917	52.92769	680093	3652845	Kajan	Eocene	1
A2	Та	32.99319	52.93646	680924	3652198	Kajan	Eocene	1
A5	Та	32.99733	52.93303	680595	3652651	Kajan	Eocene	1
A7	Та	32.99872	52.92933	680247	3652798	Kajan	Eocene	1
B13	Та	32.99917	52.92769	680093	3652845	Kajan	Eocene	1

ادامه جدول ۲. اطلاعات پایگاه داده ژئوشیمی مورد استفاده در بخش میانی کمان ماگمایی ارومیه-دختر. اختصار منابع مطابق با جدول ۱ است. Table 2 (Continued). Information of the studied geochemistry database from central part of the Urumieh-Dokhtar magmatic arc. Abbreviations of references are the same as Table 1.

نمودار جریانی که در شکل ۲ نشانداده شده است، ردهبندی شدند و سری ماگمایی آنها تعیین شد.

برای نام گذاری سریع نمونه ها از نمودار TAS (TAS سرای نام گذاری سریع نمونه ها از نمودار AL (al., 2002 (al., 2002) که در شکل ۵ نشان داده شده، استفاده شده است. خروجی نمودار جریانی (شکل ۲) یعنی نتایج تعیین سری ماگمایی و نام نمونه ها در قالب جدول ۳ و نتایج آماری آن در جدول ۴ آمده است. نقشه پراکندگی نمونه های پایگاه داده مورد بررسی پس از تفکیک سری ماگمایی در شکل ۶ نشان داده شده است.

چنان که در جدول ۴ نیز مشخص است، در کل، هیچ یک از نمونه های مورد بررسی، ویژگی های سری ماگمایی آلکالن و تولئیتی را نشان نمی دهند. از گروه اول (فاز اول آتشفشانی، ائوسن) حدود ۷۱ درصد نمونه ها کالک آلکالن و ۲۹ درصد شوشونیتی هستند. از گروه دوم (فاز دوم آتشفشانی، الیگوسن – پلیوسن) حدود ۶۷ درصد ماهیت شوشونیتی داشته و ۳۳ درصد کالک آلکالن هستند. از گروه ۳ (فاز سوم ولکانیسم، پلیوسن – کواترنر) به غیر از نمونه های CN4، S13 (2009) دارل (Khodami, 2009) که ماهیت شوشونیتی دارند و نمونه های OG4 و SK1 که ماهیت آداکیتی نشان می دهند. این ارقام در نمودار ستونی شکل ماهیت آداکیتی نشان می دهند. این ارقام در نمودار ستونی شکل ۷ نشان داده شده اند. برای مدیریت پردازش دادهها و برای تعیین سری ماگمایی نمونهها، یک نمودار جریانی طراحی شد. در طراحی این نمودار جریانی که در شکل ۲ نشانداده شده، از ۳ نشانگر برای تعیین هر سری ماگمایی استفاده شده است تا پاسخ مناسب و صریح در هر سری ماگمایی استفاده شده است تا پاسخ مناسب و صریح در دو شرط از سه شرط احراز را داشته باشد، در آن سری ماگمایی قرار می گیرد. چنان که در شکل ۲ نیز مشخص است این نشانگرها عبار تند از: نمودارهای TAS (شکل ۳-۸) و AFM نشانگرها عبار تند از: نمودارهای TAS (شکل ۳-۸) و AFM در نشانگرها عبار تند از: نمودارهای Ce/Yb در مقابل Ta/Yb (شکل مقابل Ta/Yb (شکل ۳-۵) و Ce/Yb در مقابل Ta/Yb (شکل مقابل Ta/Yb)، نمودار Martin, 1986; ای (A-۴ (شکل ۲-۸))، نمودار (B-7) (Martin, 1986; ای (A-۴ در مقابل Yb)، نمودار (B-7)، مقادیر ۲۵/۵)، نمودار Yb در مقابل Yb (شکل (B-7)، مقادیر ۲۵/۵)، در مقابل Yb (شکل ۲-۵). (Drummond and Defant, 1990) (Na2O

در این نمودار جریانی (شکل ۲)، ترتیب گزینش ها نیز به گونهای لحاظ شده است که عدم توانایی برخی نمودارها در شناسایی سری های ماگمایی خللی در نتیجه ایجاد نکند، بهعنوان مثال تفکیک آداکیت ها قبل از تفکیک نمونه های شوشونیتی و کالک آلکالن صورت می گیرد. کلیه نمونه ها بر اساس این

______ **جدول ۳.** نتایج تعیین ماهیت ماگمایی (بر اساس نمودار جریانی شکل ۲) و نـام *گ*ـذاری سـنگهـای آتشفشـانی مـورد بررسـی در بخـش میـانی کمـان ماگمایی ارومیه-دختر (بر اساس نمودار TAS شکل ۵). CA: کالک آلکالن، Sh: شوشونیتی، Ad: آداکیت. منابع مطابق با جدول ۱ آورده شدهاند.

Table 3. Results of determining magmatic series (based on flowchart of Fig. 2) and nomenclature of the studied volcanic rocks from central part of the Urumieh-Dokhtar magmatic arc. (based on TAS diagram of Fig. 5). Ca: Calcalkaline, Sh: Shoshonitic, Ad: Adakite. Ref.: References (Ref.) are similar to Table 1.

Sa103RhyoliteAdKhQQ 021DaciteSa173RhyoliteAdKhAR23AndesiteSa203RhyoliteAdKhCN33Dacita	e Ad
Sa 17 3 Rhyolite Ad Kh AR2 3 Andesite Sa 20 3 Rhyolite Ad Kh CN3 3 Desite	e Ad
Sa 20 3 Rhyolite Ad Kh CN3 3 Degite	Δd
Sa 20 5 Knyone Au Kn Ch5 5 Dache	Au
Sa 51 2 Rhyolite Sh Kh CN4 3 Andesite	e Sh
Sa 56 2 Rhyolite CA Kh CN5 3 Trachyandesite	e, latite Ad
Sa 57 2 Rhyolite Sh Kh CN6 3 Dacite	Ad
Sa 63 2 Peralkaline rhyolite CA Kh DH4 3 Dacite	Ad
Sa 71 2 Rhyolite Sh Kh DH7 3 Dacite	Ad
Sa 73 2 Peralkaline rhyolite CA Kh EM1 3 Dacite	Ad
Sa 77 2 Rhyolite Sh Kh JS13 3 Andesite	e Sh
Sa 79a 2 Rhyolite Sh Kh MAG 3 Dacite	Ad
Sa 83 2 Rhyolite Sh Kh OG4 3 Dacite	CA
AhSA172Basaltic andesiteCAKhRS23Dacite	Ad
AhSA182Alkali basaltShMorSK13Basaltic and	lesite CA
AhSA222Alkali basaltShMorT043Basaltic and	lesite Ad
Ah SA7 1 Basaltic trachyandesite CA Mor A12 1 Andesite	e CA
Am BK14 1 Trachyte Sh Mor A19 1 Andesite	e CA
AmBK151TrachyteShMorA31Dacite	CA
Am BK18 1 Rhyolite Sh Mor A33 1 Rhyolite	e CA
AmBK21RhyoliteShMorA371Trachyande	esite, CA
As KAF-022 3 Dacite Ad Mov A39 1 Rhyolite	e CA
As KAF-042 3 Dacite Ad Mov A7 1 Dacite	CA
As KAF-047 3 Dacite Ad Mov 571-10 1 Basaltic and	lesite CA
As KAF-143 3 Dacite Ad Mov 571-12 1 Andesite	e CA
As KAF-188 3 Dacite Ad Mov 571-15 1 Basaltic and	lesite CA
As KAF-206 3 Dacite Ad Mov 571-2 1 Basaltic and	lesite CA
As KAI-020 3 Trachydacite Ad Mov 571-21 1 Andesite	e CA
As KAI-021 3 Rhyolite Ad Mov 571-28 1 Basaltic and	lesite CA
Fa ZF30 1 Trachydacite CA Mov 571-5 1 Andesite	e CA
Fa ZF33 3 Dacite Ad Mov 571-6 1 Basaltic and	lesite CA
Fa ZF34 3 Dacite Ad Om 571-7 1 Basaltic and	lesite CA
Fa ZF40 I Rhyolite Sh Om 5/1-9 I Basaltic and	lesite CA
Fa ZF41 I Dacite CA Om Q.10 I Potassic trachy	ybasalt CA
Fa ZF42 3 Dacite Ad Om Q.12 1 Dacite	Sh
Fa ZF43 I Rhyolite Sh Ta Q.13 I Rhyolite	e Sh
Fa ZF44 I Rhyolite Sh Ia Q.20 I Irachyandesite	ie, latite CA
Ja 4.00/ I Andesite CA Fa ZF46 I Rhyolite	e Sh
Ja 4.008 I Rhyolite Sh Fa ZF4/ I Irachydac	cite CA
Ja 4.05 3 Dacite Ad Ja 1.11 I Basaltic and	iesite CA
Ja 4.06 3 Rhyolite Ad Ja 1.8 I Andesite	e CA
Ja 4.07 3 Dacite Ad Ja 2.101 I Basaltic and	lesite CA
Ja 10 I Rhyolite CA Ja 2.5 I Basaltic trachya	andesite, CA
Ja ZIN 15 I Knyolite UA Ja 4.003 I Andesite	e Sh
Ja D.30 I Subalkali basalt CA Ja 4.006 I Basaltic and	Lesite CA
Ja DJ0-2 I SUUAIKAII UASAIL CA IA AI I KNYOIIIG	\mathbf{c} $\mathbf{S}\mathbf{n}$
a a a a a a a a a a	e CA

ادامه جدول ۳. نتایج تعیین ماهیت ماگمایی (بر اساس نمودار جریانی شکل ۲) و نامگذاری سنگهای آتشفشانی مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر (بر اساس نمودار TAS شکل ۵). CA: کالک آلکالن، Sh: شوشونیتی، Ad: آداکیت. منابع مطابق با جدول ۱ آورده شدهاند.

Table 3 (Continued). Results of determining magmatic series (based on flowchart of Fig. 2) and nomenclature of the studied volcanic rocks from central part of the Urumieh-Dokhtar magmatic arc. (based on TAS diagram of Fig. 5). Ca: Calc-alkaline, Sh: Shoshonitic, Ad: Adakite. Ref.: References (Ref.) are similar to Table 1.

Ref.	Sample Name	group	Rock name (TAS)	Series	Ref.	Sample Name	group	Rock name (TAS)	Series
Та	A15	1	Rhyolite	CA	Ja	A7	1	Trachyandesite, latite	CA
Та	A2	1	Rhyolite	CA	Ja	B13	1	Rhyolite	Sh
Та	A5	1	Trachyte	CA					

شکل ۲. نمودار جریانی طراحی و استفاده شده برای تعیین سری ماگمایی نمونههای مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر، .G: گروه، ، .Alk: آلكالن، .Cal: كالك آلكالن، .Ad: آداكيت، .Sh: شوشونيتي، Th: تولئيتي

Fig. 2. Flowchart used for determining magmatic series of studied samples from central part of the Urumieh-Dokhtar magmatic arc, G. :Group Alk. :Alkaline, Cal. :Calk-alkaline, Ad. :Adakite, Sh.: Shoshonitic, Th: Tholeitiic

شكل ۳. A: نمودار مجموع آلكالى در مقابل سيليس (TAS) (TAS) (Irvine and Baragar, 1971) براى تشخيص سرى ماگمايى آلكالن، B: نمودار مثلثى Ta/Yb (Irvine and Baragar, 1971) AFM) براى تفكيك سرىهاى ماگمايى ساب آلكالن تولئيتى و كالك آلكالن، C: نمودار Th/Yb در مقابل Ta/Yb Ta/Yb (Pearce, 1982; Müller et al., 1992) براى تفكيك سرىهاى شوشونيتى، كالك آلكالن و تولئيتى و C: نمودار Ce/Yb در مقابل Ta/Yb (Pearce, 1982; Müller et al., 1992) براى تفكيك سرىهاى شوشونيتى، كالك آلكالن و تولئيتى براى نمونهاى مورد بررسى در بخش ميانى كمان ماگمايى اروميه-دختر

Fig. 3. A: Total alkali versus SiO_2 diagram (TAS) (Irvine and Baragar, 1971) for identifying alkaline series, B: Triangular diagram of AFM (Irvine and Baragar, 1971) for discriminating between shoshonitic and calc-alkaline series, C: Th/Yb versus Ta/Yb diagram (Pearce, 1982; Müller et al., 1992) for discriminating between shoshonitic, calc-alkaline and toleiitic series, and D: Ce/Yb versus Ta/Yb diagram (Pearce, 1982; Müller et al., 1992) for discriminating between shoshonitic, calc-alkaline and toleiitic series, for studied samples from central part of the Urumieh-Dokhtar magmatic arc

Table 4. Statistical result of determining magmatic series of samples from central part of the Urumieh-Dokhtar magmatic arc. based on flowchart shown in Fig. 2

	Adakite		Shoshonitic		Calc- alkaline		Toleiitic		Alkaline		Total
	N.	%	N.	%	N.	%	N.	%	N.	%	N.
Group 1	0	0.0	16	29	39	71	0	0	0	0	55
Group 2	0	0.0	8	67	4	33	0	0	0	0	12
Group 3	39	88	2	6	2	6	0	0	0	0	32

شکل ٤. A. نمودار (La/Yb) در مقابل Martin, 1986, 1999) Yb_N و E: نمودار Sr/Y در مقابل Y (Drummond and Defant, 1990)، برای نمونههای مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر.

Fig. 4. A: $(La/Yb)_N$ versus Yb_N diagram (Martin, 1986, 1999), and B: Sr/Y versus Y diagram (Drummond and Defant, 1990), for studied samples from central part of the Urumieh-Dokhtar magmatic arc.

شکل ۵. نمودار TAS (Le Maitre et al., 2002) TAS برای نام گذاری سنگهای آتشفشانی مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر Fig. 5. TAS diagram (Le Maitre et al., 2002) for nomenclature of the studied volcanic rocks from central part of the

Urumieh-Dokhtar magmatic arc.

شکل ٦. توزیع مکاني پايگاه داده ژئوشيمي مورد بررسي در بخش مياني کمان ماگمايي اروميه-دختر و به تفکيک سري ماگمايي

Fig. 6. Spatial distribution of the studied geochemistry database from central part of the Urumieh-Dokhtar magmatic arc.showing magmatic series

شکل ۲. نمودار ستونی که فراوانی (درصد) هریک از سریهای ماگمایی نمونههای مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر در هر گروه را نشان می دهد.

Fig. 7. Column diagram showing the frequency (percentage) of each magmatic series for studied samples from central part of the Urumieh-Dokhtar magmatic arc in each group.

يتروژنز نمونههای کالکآلکالن سرى ماگمايي كالكآلكالن با مقادير نسبتاً بالاي كلسيم و سديم، همچنين محتواي بالاي آب و فو گاسيته اکسيژن مشخص میشوند. این سری ماگمایی شاخص مناطق فرورانش نوع قارمای محسوب میشود و نتیجه تبلور تفریقی بازالتهای آبدار است (Kennedy, 1955). در مناطق فرورانش نوع قارهای، ماگماهای کالک آلکالن از ذوببخشی گوه گوشتهای بالای صفحه فرورونده در حضور آب، حاصل می شوند. تصور می شود که ماگماهای بازالتی آبدار حاصل از ذوب بخشی گوه گوشته، با تبلور فازهای اکسید آهن زودهنگام و تفریق سیلیکات ها تکامل می یابند. این فرایند سبب غنی شدگی آلکالیها و تهیشدگی از آهن میشود که روند تفریق در سری کالک آلکالن را به نمایش می گذارد. در صورتی که ماگماهای بازالتی خشک در آغاز مراحل تبلور خود، قادر به تبلور فازهای اکسیدآهن نیستند و به جای تهی شدگی از آهن، از آن غنی می شوند، بدین تر تیب روند تفریق در سری های تولئیتی رقم مىخورد (Sisson and Grove, 1993). ممكن است بالا بودن فو گاسیته اکسیژن در سری کالک آلکالن ناشی از فراوانی آب ماگمایی محلول باشد که خود موجب تشکیل اکسیدهای آهن در مراحل آغازین تبلور ماگما میشود. نهشتهشدن و جدایش این فازها از مذاب، روند تفریق کالک آلکالن را برای ماگما رقم مي زند (Osborn, 1959). همين ويژگي، اساس تفکیک سری ماگمایی تولئیتی و کالک آلکالن در نمودار AFM است.

به منظور تعیین درصد ذوب بخشی سنگ منشأ برای تولید نمونه های کالک آلکالن مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر می توان از نمودار های La/Sm در مقابل La و Sm/Yb در مقابل La/Sm (2000) La/Sm) که برای بررسی درجه ذوب بخشی گارنت لرزولیت و اسپینل لرزولیت طراحی شده است، استفاده کرد. این نمودار ها در شکل های ۸ و ۹ نشان داده شده اند.

بر اساس نمودار شکل ۸ (نمودار Sm در مقابل La/Sm نمونههای کالک آلکالن از ذوب بخشی ۳ تا ۲۰ درصد با میانگین حدود ۱۵ درصد ذوب بخشی سنگ منشأ اسپینل -گارنت لرزولیت حاصل شدهاند. بر اساس نمودار شکل ۹ (نمودار Sm/Yb در مقابل La/Sm) مقدار ذوب بخشی نمونه های کالک آلکالن ۴ تا ۲۰ درصد با میانگین حدود ۱۵ درصد بر آورد می شود. در شکل ۹ نمونه ها در هر دو محدوده گارنت لرزولیت و اسپینل - لرزولیت قرار دارند و از گوشته غنی شده مشتق شدهاند.

پتروژنز نمونههای شوشونیتی

اصطلاح شوشونیت نخستین بار توسط ایدینگز (Iddings) 1895) برای بازالت های پتاسیک ار توکلاز دار در پارک یلوستون به کار برده شد. بعد از آن این اصطلاح برای بازالت ها و آندزیت های پتاسیک به کار رفت. سنگ های مجموعه های شوشونیتی از بازیک به اسیدی با نام های آبسارو کیت، باناکیت، شوشونیت و توسکانیت شناخته می شوند. نمونه های آبسارو کیتی Hesse and Grove, اولیه هستند (2003).

در ایالت ماگمایی شمال زمین درز زاگرس – بیتلیس که کمان ماگمایی ارومیه – دختر را نیز شامل می شود، ماگماتیسم پتاسیک شوشونیتی هم در محیط زمین ساختی کمان قارهای (,Amidi (,Amidi) و هم در محیط پس از برخورد قارهای (, ,100 الله et al () () 2010 گزارش شده است. توالی های نفوذی – آتشفشانی شوشونیتی سنوزوئیک در کمان ارومیه – دختر مشابه محصولات ماگماتیسمی هستند که در جنوب شرقی آنتالیا (شرق تر کیه) و ناحیه زاگرس رخداده است که خود نتیجه شکست مفحه فرورونده در مرحله پس از بر خورد قارهای است () Dilek et استنوسفری ۲ همراه بوده، سبب سهولت ذوب بخشی صفحه فرورونده متاسوماتیز شده، شده است (; 2005) مو فرورونده متاسوماتیز شده، شده است () 3005

^{1.} Break off

^{2.} Asthenospheric window

از برخورد قارهای هستند.

اول در یهنه مورد بررسی، مربوط به محیط کمان قـارهای هسـتند

در حالی که سنگهای شوشونیتی فاز دوم مربوط به محیط پس

Ghasemi and Talbot, 2006; Dilek and Sandvol, 2009). بر اساس این مدل زمین ساختی، شکست صفحه فرورونده سبب تشکیل ماگماتیسم شوشونیتی در بخش پس خشکی (هینترلند) زون بر خورد بر روی صفحه بالایی شده است. ساری (Sayari, 2015) نشانداد که سنگهای شوشونیتی فاز

شکل ۸ A: نمودار Sm/Yb در مقابل La/Sm (Ooder, 1998) و اسپینل – لرزولیت (Aldanmaz et al., 2000) La/Sm در مقابل Sm/Yb در مقابل Advier, 1998) و اسپینل – لرزولیت (Kinzler, 1997). MMD: ترکیبی از مورب تهی شده و منحنی های درجه ذوب بخشی گارنت – لرزولیت (Walter, 1998) و اسپینل – لرزولیت (Kinzler, 1997). MMD: ترکیبی از مورب تهی شده و گوشته آستنوسفری (Sun and McDonough, 1999)، N-MORB، مورب نرمال، PM: گوشته اولیه، Aldanmaz et al., 2000). در خاص فرخیم مشخص شده است و B: نمودار بخش A با بازه تغییرات محدودتر

Fig. 8. A: Sm/Yb versus La/Sm diagram (Aldanmaz et al., 2000) for studied samples from central part of the Urumieh-Dokhtar magmatic arc. Partial melting curves of garnet-lherzolite (Walter, 1998) and spinel-lherzolite (Kinzler, 1997). DMM: Depleted MORB Mantle (McKenzie and O'Nions, 1991, 1995), N-MORB: Normal Morb, PM: Primitive Mantle, E-MORB: Enriched Mantle (Sun and McDonough, 1989), WAM: West Anatolian Mantle (Aldanmaz et al., 2000). The heavy line represents the mantle array, and B: diagram shown in part A with a closer domain

شکل ۹. A: نمودار La/Sm در مقابل La/Sm در مقابل Aldanmaz et al., 2000) لرای نمونه های مورد بررسی در بخش میانی کمان ماگمایی ارومیه - دختر. منحنی های درجه ذوب بخشی گارنت - لرزولیت (Walter, 1998) و اسپینل - لرزولیت (Kinzler, 1997)، DMM: گوشته تهی شده (Sun and McDonough, 1989)، MORB: گوشته اولیه، E-MORB، مورب غنی شده (Sun and McDonough, 1989) و Second Aldan (Lagar این اولیه، Borker 2007). دورب غنی شده (Sun and McDonough, 1989)، مورد برای دورب غنی شده (Sun and McDonough, 1989)، MORB) و اسپینل - لرزولیت (Aldanmaz et al., 2000)، Sun and McDonough, 1989). دورب غنی شده (Sun and McDonough, 1989)، مورب غنی شده (Sun and McDonough, 1989)، مورب غنی شده (Sun and McDonough, 1989)، دورب غنی شده (Sun and McDonough, 1989)، دورب غنی شده (Aldanmaz et al., 2000)، Sun and McDonough, 1989). دوند گوشته ای با خط ضخیم مشخص شده است و B: نمودار بخش Aldan (Lagar Sun aldan)، مورب تغیرات مورب است و B: نمودار (Lagar Sun aldan)، مورب تغیرات مورب تو مان گوشته عنی شده (Sun and McDonough, 1989). دوند گوشته ای با خط ضخیم مشخص شده است و B: نمودار بخش Aldan (Lagar Sun aldan)، مورب تغیر آن و تعیرات مورب تو مان گوشته عنی شده (Aldanmaz et al., 2000). دوند گوشته ای با خط ضخیم مشخص شده است و B: نمودار بخش Aldan (Lagar Sun aldan). دوند گوشته ای با خط ضخیم مشخص شده است و B: نمودار دخش Aldan (Lagar Sun aldan). دوند گوشته ای بازه تغیرات محدود تو

Fig. 9. A: La/Sm versus La diagram (Aldanmaz et al., 2000) for studied samples from central part of the Urumieh-Dokhtar magmatic arc. Partial melting curves of garnet-lherzolite (Walter, 1998) and spinel-lherzolite (Kinzler, 1997). DMM: Depleted MORB Mantle (McKenzie and O'Nions, 1991, 1995), N-MORB: Normal Morb, PM: Primitive Mantle, E-MORB: Enriched Mantle (Sun and McDonough, 1989), WAM: West Anatolian Mantle (Aldanmaz et al., 2000). The heavy line represents the mantle array, and B: diagram shown in part A with a closer domain

Taylor) گوشته در نزدیکی اسلب فرورونده سرد، حاصل شود (Taylor) گوشته در نزدیکی اسلب فرورونده سرد، حاصل شود (et al., 1994 می تواند حاصل تأثیر سیالات غنی از LILE و یا مذابهای آلکالی دما پایین برخاسته از اسلب اقیانوسی فرورونده باشد Saunders et al., 1980; Pearce, 1983; Bailey et al.,)

مین (Meen, 1987) سنگهای آتشفشانی پتاسیک را حاصل ذوب بخشی درجه کم لرزولیت متاسوماتیز شده گوشته بالایی که از LILE و LREE غنی شده در شرایط آبدار و در شرایطی که جریان گرمایی محیط چندان زیاد نیست، در نظر گرفت. در محیط های کمانی، ذوب بخشی ممکن است با تغییر ژئو ترم

١٣٦

.(Kepezhinskas, 2001

عمده رخدادهای آداکیتی در حاشیه اقیانوس آرام قرار دارند و به عبارت دقیق تر آنها اغلب جایی هستند که لیتوسفر اقیانوسی جوان است (کمتر ۲۰ میلیون سال) و صفحه فرورونده در عمق ۰۷ تا ۹۰ کیلومتری زیر کمان ولکانیک قرار گرفته است. ذوب اسلب قدیمی نیز تحت شرایطی ممکن است موجب تشکیل ماگمای آداکیتی شود. این شرایط عبارتند از: ۱) شروع فرورانش، ۲) فرورانش سریع و ۳) انتهای فرورانش (Maury et .(al., 1996)

برخی از پژوهشگران بر این اعتقاد هستند که سنگهایی با ترکیب آداکیتی حاصل ذوب بخشی پوسته زیرین است (Kay ترکیب آداکیتی حاصل ذوب بخشی پوسته زیرین است (et al., 1999; Wang et al., 2007, 2008 (et al., 1999; Wang et al., 2007, 2008) مارح کردند که در آن پوسته ضخیم شده به دلیل کو تاه شد گی و مطرح کردند که در آن پوسته ضخیم شده به دلیل کو تاه شد گی و دلامیناسیون گوشته، نقش اصلی را ایفا می کند. آنها عقیده داشتند که دلامیناسیون سریع لیتوسفر و جایگزینی توسط داشتند که دلامیناسیون سریع لیتوسفر و جایگزینی توسط می شود. این مذاب ها پوسته قاره ای زیرین ضخیم شده را ذوب کرده و مذاب های TTG تولید می کنند و اکلوژیت را در پوسته زیرین برجای می گذارند. این نظریه مورد پذیریش پژوه شگران Martin, 1999; Martin et al., 2005; در ای در بارای

کاندی (Condie, 2005) بیان کرد که دادههای ژئوشیمیایی می توانند به شناخت محیط زمین ساختی کمک کنند؛ ولی به تنهایی قادر به شناسایی محیط زمین ساختی نیستند. بدین مفهوم که هر مدلی که برای منشأ سنگهای آداکیتی معرفی می شود باید با ویژگیها و واقعیتهای تکتونوفیزیکی حاکم در منطقه ساز گاری داشته باشد و بتواند آنها را توجیه کند.

سیاری و شریفی (Sayari and Sharifi, 2018) نشاندادند که در کمان ماگمایی ارومیه-دختر ارتباط مشخصی بین موقعیت رخنمونهای آداکیتی و آنومالی مثبت در ضخامت لیتوسفر وجود دارد. آنها نشان دادند آداکیتها در بخش میانی کمان 1989; Sun and McDonough, 1989). به منظور تعیین درصد ذوب بخشی سنگ منشأ برای تولید نمونه های شوشونیتی مورد بررسی، مانند نمونه های کالک آلکالن که مورد بحث قرار گرفت، می توان از نمودارهای La/Sm در مقابل La و Sm/Yb در مقابل La/Sm (,. La/Sm و 2000 (2000) که برای بررسی درجه ذوب بخشی گارنت لرزولیت و اسپینل لرزولیت طراحی شده است، استفاده کرد. این نمودارها در شکل های ۸ و ۹ نشان داده شده اند. شکل ۸-B در واقع بزرگنمایی بخشی از نمودار شکل ۸-A است که نمونه ها در آن قرار می گیرند. به همین ترتیب، شکل ۹-B، بزر گنمایی بخشی از نمودار شکل ۹-A است که نمونه ها در آن قرار می گیرند.

بر اساس نمودارهای شکلهای ۸ و ۹، ذوب بخشی حدود ۱ تا ۶ درصد و میانگین ۳ درصد با منشأ اسپینل -گارنت لرزولیت بر آورد می شود. باید توجه داشت که در هنگام استفاده از چنین نمودارهایی باید سعی شود از بازیک ترین نمونه ها استفاده شود تا بر آورد متأثر از تفریق نشود. به هر حال، از آنجایی که روند تغییرات عناصر نادر در یک سری ماگمایی مشخص تا حدود زیادی ثابت باقی می ماند و از طرف دیگر نسبت ها اغلب ثابت باقی می مانند، می توان از نمونه های اسیدی تر هم استفاده می شود می توان اعداد حاصل را به عنوان حداقل درجه ذوب بخشی تفسیر کرد. بر اساس نمودارهای شکل های ۸ و ۹ ناحیه منشأ گوشته عنی شده بوده است.

پتروژنز آداکیتها

پتروژنز آداکیتها، یکی از داغ ترین مباحث پترولوژی در دو دهه اخیر بوده است. در ابتدا سنگهای آداکیتی را حاصل ذوب پوسته اقیانوسی فرورونده در فرورانش تصور کردند (Kay, پوسته اقیانوسی فرورونده در فرورانش تصور کردند (Kay, پوسته اقیانوسی فرورونده در فرورانش تصور کردند (1978; Defant and Drummond, مختلفی در کارهای پژوهشی متعدد این فرضیه را مورد تأیید Yogodzinski et al., 1995; Stern and قرار دادند (Kilian, 1996; Martin, 1999; Defant and و U (Wang et al., 2005; Wang et al., 2007) مشخص می شوند. این نوع سنگ های آداکیتی دارای مقادیر فوق العاده زیاد Sr هستند (تا Tron ppm). ایس مقدار معمولاً برای آداکیت های HSA کمتر است. برای تفکیک این نوع سنگ ها و سنگ های آداکیتی به دست آمده از ذوب بخشی اسلب فرورونده می توان از نمودار PMC در مقابل Th (Wang et) Th فرورونده می توان از نمودار در شکل ۱۰ نشان داده شده است. شکل ۱۰ نه تنها نظریه ذوب بخشی پوسته زیرین را برای نمونه های مورد بررسی رد می کند؛ بلکه نظریه ذوب بخشی اسلب فرورونده را تقویت می کند. ماگمایی ارومیه-دختر در جایی واقع شدهاند که عمق مرز لیتوسفر و آستنوسفر بیش از ۲۱۲ کیلومتر است. مدل ذوببخشی پوسته مافیک زیرین قادر نیست ارتباط بین آنومالیهای مشاهده شده در ضخامت لیتوسفر و عمق LAB (مرز لیتوسفر – آستنوسفر) را توجیه کند (Sayari and Sharifi,) (2018). علاوهبر آن ترکیب شیمیایی آداکیتهای مورد بررسی ویژگیهای سنگهای آداکیتی (یا شبه آداکیتی) که حاصل از ذوببخشی پوسته هستند را نشان نمیدهند. آداکیتهای منتج از ذوببخشی پوسته زیرین غنی تر از K2O (K2O) هستند و با مقادیر مشخص بالای عناصر ناساز گاری چون Rb، Ba، Rb

شکل ۱۰. نمودار Th/Ce در مقابـل Th، محـدوده آداکیـتهـای حاصـل از پوسـته و پوسـته اقیانوسـی فرورونـده (Wang et al., 2008) و موقعیت نمونههای آداکیتی مورد بررسی در بخش میانی کمان ماگمایی ارومیه-دختر

Fig. 10. Th/Ce versus Th diagram, domains of crust-derived adakites and slab-derived adakites (Wang et al., 2008), and situation of the studied adakites from central part of the Urumieh-Dokhtar magmatic arc

منبع انرژی حرارتی اضافه نیاز هست که اسلب فرورانده شده را به اندازه کافی گرم کند تا بتواند دچار ذوب بخشی شده و ماگماتیسم آداکیتی پس از بر خورد را رقم بزند. این منبع حرارتی توسط دلامیناسیون گوشته به صورت محلی فراهم شده است. در واقع محل های رخنمون آداکیت ها در کمان ماگمایی اما یک نقطه مجهول در انجام ذوببخشی اسلب فرورونده وجود دارد. پوسته اقیانوسی فرورانده شده به اندازه کافی گرم نبوده تا بتواند قبل از دیهیدراته شدن دچار ذوببخشی شود، همچنین ماگماتیسم کواترنر از نوع پس از برخورد است. به عقیده سیاری و شریفی (Sayari and Sharifi, 2018)، یک

۱۳۸

ارومیه- دختر نشاندهنده محل های شروع وقوع دلامیناسیون در

برای تعیین درصد ذوببخشی نمونه های آداکیتی نمودارهای مختلفی پیشنهادشده است که در تمام آنها سنگ مادرهای

گارنتدار با یا بدون آمفیبول شامل آمفیبولیت های گارنتدار و

اکلوژیت مورد بررسی قرار می گیرند. در اینجا برای بررسی

ذوب بخشی نمونه های آداکیتی مورد بررسی (آداکیت های فاز سوم ولکانیسم یا گروه ۳) از نمودار شکل ۱۱ (Bourdon et

al., 2002) استفاده شده است. بر این اساس دو گروه متمایز

قابل تشخیص هستند. گروه اول با سنگ منشأ گارنت آمفيبوليت

گوشته است (Sayari and Sharifi, 2018).

که ذوب بخشی حدود ۲ تا ۲۰ درصد با میانگین ۱۰ درصد نشان می دهند. این نمونه ها اغلب در منطقه کجان و کهنگ واقع شده اند که مطابق با آنوم الی مشاهده شده در ساختار پوسته و گوشته در شمال شهر کوهپایه (Sayari, 2015) است. گروه دوم که نزدیکی بیشتری با سنگ منشأ هورنبلند اکلوژیت دارند، ذوب بخشی ۲ تا ۸ درصد با میانگین ۶ درصد نشان می دهند. این نمونه ها اغلب در منطقه جوشقان – قهرود واقع شده اند که مطابق با آنو مالی مشاهده شده در ساختار پوسته و گوشته در شرق شهر میمه (Sayari, 2015) است.

شکل ۱۱. نمودار La/Yb در مقابل Yb و منحنی های ذوب بخشی گارنت آمفیبولیت (۱)، هورنبلند اکلوژیت (۲) و اکلوژیت (۳) (Bourdon et al.,) 2002) و موقعیت آداکیت های مورد بررسی در بخش میانی کمان ماگمایی ارومیه- دختر

Fig. 11. La/Yb versus Yb diagram, partial melting curves of garnet amphibolite (1), hornblende eclogite (2) and eclogite (3) (Bourdon et al., 2002), and situation of the studied adakites from central part of the Urumieh-Dokhtar magmatic arc

نتيجه گيري

آداکیتی متحول شده است. منشأ هر دو ماگماتیسم کالک آلکالن و شوشونیتی، ذوب بخشی در گوه گوشته است؛ در حالی که ماگماتیسم آداکیتی حاصل ذوب پوسته اقیانوسی فرورانده شده است. یعنی منشأ فاز سوم ماگماتیسم متحول شده است. نظر به اینکه فعالیت های آتشفشانی پلیو کواتر در کمان آتشفشانی ارومیه - دختر از نوع پس از بر خورد است، با در نظر گرفتن شرایط زمین ساختی و داشته های موجود می توان چنین استنباط کرد که

بر اساس تحلیل آماری پایگاه داده ژئوشیمی مورد بررسی، در بخش میانی (شمالشرق اصفهان) کمان ماگمایی ارومیه-دختر (به طول حدود ۲۰۰ کیلومتر)، سنگهای آتشفشانی سنوزوئیک در سه گروه کالکآلکالن، شوشونیتی و آداکیتی قرار می گیرند. نتایج نشان میدهد که آتشفشانی سنوزوئیک از ائوسن تا کواترنری از کالکآلکالن به سمت شوشونیتی و بعد از آن به درصد با منشأ اسپینل - گارنت لرزولیت حاصل شدهاند. آداکیت -های منطقه کجان و کهنگ از ذوب بخشی حدود ۱۰ درصد گارنت آمفیبولیت حاصل شدهاند و آداکیت های منطقه جوشقان - قهرود از ذوب بخشی حدود ۶ درصد هورنبلند اکلوژیت حاصل شدهاند.

قدردانى

از مدیریت محترم شرکت آب منطقهای اصفهان، تحصیلات تکمیلی دانشگاه اصفهان و همچنین از زحمات خانم مهندس فاطمه درویشزاده قدردانی میشود. پوسته اقیانوسی فرورانده شده متروک در گوشته دچار ذوب بخشی شده است. تغییر کانون ذوب بخشی از گوه گوشته به اسلب قدیمی به جای مانده در گوشته، نشان می دهد که شرایط تکتونوفیزیکی حاکم بر تکاپوی آتشفشانی در زمان پلیو کواترنر کاملاً تغییر کرده است. انرژی حرارتی لازم برای ذوب بخشی اسلب قدیمی نیز به صورت محلی (در محل های وقوع ماگماتیسم آداکیتی) بر اثر شروع دلامیناسیون گوشته ای فراهم شده است (Sayari and Sharifi, 2018).

بر آوردها نشان میدهد نمونههای کالک آلکالن حاصل ذوببخشی حدود ۱۵ درصد از سنگ منشأ اسپینل-گارنت لرزولیت هستند. نمونههای شوشونیتی از ذوببخشی حدود ۳

References

- Aftabi, A. and Atapour, H., 2000. Regional aspects of shoshonitic volcanism in Iran. Episodes, 23(2): 119–125. Retrieved June 11, 2021 from https://www.researchgate.net/publication/2798 96057_Regional_aspects_of_shoshonitic_volc anism_in_Iran
- Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(3): 401–419. https://doi.org/10.1016/s1631-0713(02)01717-0
- Ahmadvand, A., 2009. Geochemistry and petrology of the basic volcanic rocks from southwest Shahrab (Ardestan). M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 69 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://parseh.modares.ac.ir/thesis/2031658
- Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2): 67–95.

https://doi.org/10.1016/s0377-0273(00)00182-7

- Allen, M., Jackson, J. and Walker, R., 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23(2): 1–16. https://doi.org/10.1029/2003tc001530
- Amidi, S.M., 1977. Etude géologique de la région de Natanz-Surk (Iran, Central). Ph.D. thesis, University of Grénoble, France, 316 pp.
- Amidi, S.M., Emami, M.H. and Michel, R., 1984. Alkaline character of Eocene volcanism in the middle part of Central Iran and its geodynamic situation. Geologische Rundschau, 73(3): 917– 932. https://doi.org/10.1007/bf01820882
- Amoozad-khalili, D., 2009. Geochemistry and petrology of the intermediate-felsic volcanic rocks from southwest Shahrab (Ardestan).
 M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 59 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://parseh.modares.ac.ir/thesis.php?id=203 1736&sid=1&slc_lang=en
- Asadi, H.H., Heydari, E., Fathianpour, N. and Atar, D., 2009. Detailed Exploration at Central Kahang Copper Deposit. Isfahan Province Industry Mine and Trade Organization, Isfahan, 195 pp.

- Bailey, J.C., Frolova, T.I. and Burikova, I.A., 1989. Mineralogy, geochemistry and petrogenesis of Kurile island-arc basalts. Contributions to Mineralogy and Petrology, 102(3): 265–280. https://doi.org/10.1007/bf00373720
- Bourdon, E., Eissen, J.P., Gutscher, M.A., Monzier, M., Samaniego, P., Robin, C., Bollinger, C. and Cotton, J., 2002. Slab melting and slab melt metasomatism in the Northern Andean Volcanic Zone: adakites and high-Mg andesites from Pichincha volcano (Ecuador). Bulletin de la Société Géologique de France, 173(2): 195–206. https://doi.org/10.2113/173.3.195
- Condie, K.C., 2005. TTGs and adakites: are they both slab melts? Lithos, 80(1–4): 33–44. https://doi.org/10.1016/j.lithos.2003.11.001
- Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347 (6294): 662–665. https://doi.org/10.1038/347662a0
- Defant, M.J. and Kepezhinskas, P., 2001. Evidence suggests slab melting in arc magmas. EOS, 82(6): 65–69. https://doi.org/10.1029/01eo00038
- Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Saroglu, F. and Sengo, A.M.C., 1986. Shortening of continental lithosphere: The neotectonics of Eastern Anatolia - a young collision zone. In: M.P. Coward and A.C. Ries (Editors), Collision Zone Tectonics. Geological Society of London Special Publication, London, 3-36. pp. https://doi.org/10.1144/gsl.sp.1986.019.01.01
- Dilek, Y., Imamverdiyev, N. and Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52(4–6): 536– 578.

https://doi.org/10.1080/00206810903360422

Dilek, Y. and Sandvol, E., 2009. Seismic Structure, Crustal Architecture and Tectonic Evolution of the Anatolian-African Plate Boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region. Geological Society of London Special Publication, 327(1): 127–160. https://doi.org/10.1144/sp327.8 Drummond, M.S. and Defant, M.J., 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. Journal of Geophysical Research, 95(B13): 21503– 21521.

https://doi.org/10.1029/jb095ib13p21503

- Fardfeshani, Z., 2011. The Origin and evolution of felsic Tertiary volcanism west of Nain.
 M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 69 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://parseh.modares.ac.ir/thesis/2032119
- Ghadami, G., Moradian, A. and Mortazavi, M., Post-collisional Plio-Pleistocene 2008. adakitic volcanism in Central Iranian volcanic belt: geochemical and geodynamicimplications. Journal of Sciences, Islamic Republic of Iran, 19(3): 223-235. Retrieved June 11. 2021 from https://journals.ut.ac.ir/pdf_31896_3d5550b30 b2590c75543469f305410a2.html
- Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj-Sirjan zone (Iran). Journal of Asian Earth Sciences, 26(6): 683–693.

https://doi.org/10.1016/j.jseaes.2005.01.003

- Hassanzadeh, J., 1993. Metallogenic and tectonomagmatic events in the SE sector of Cenozoic active continental margin of Central Iran (Sharebabak area), Kerman province. Ph.D. Thesis, University of California, Los Angeles, USA, 204 pp. Retrieved June 11, 2021 from https://www.worldcat.org/title/metallogenicand-tectonomagmatic-events-in-the-se-sectorof-the-cenozoic-active-continental-margin-ofcentral-iran-shahr-e-babak-area-kerman-
- province/oclc/29813932 Hesse, M. and Grove, T.L., 2003. Absarokites from the western Mexican Volcanic Belt: constraints on mantle wedge conditions. Contributions to Mineralogy and Petrology, 146(1): 10–27. https://doi.org/10.1007/s00410-003-0489-3
- Iddings, J.P., 1895. Absarokite-shoshonitebanakite series. The Journal of Geology, 3(8): 935–959. https://doi.org/10.1086/607398
- Irvine, T.N. and Barager, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth

Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055

- Jabbari, A., 2014. Petrology of volcanic and subvolcanic rocks in Zefreh-Kashan axis. Ph.D. Thesis, Shahid Beheshti University, Tehran, Iran, 182 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://centlibrary.sbu.ac.ir/faces/search/biblio graphic/biblioFullView.jspx?_afPfm=kcv4wk m2w
- Jackson, J. and McKenzie, D., 1984. Active tectonics of the Alpine-Himalayan belt between western Turkey and Pakistan. Geophysical Journal International, 77(1): 185– 264. https://doi.org/10.1111/j.1365-246x.1984.tb01931.x
- Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30(3–4): 433–447. https://doi.org/10.1016/j.jseaes.2006.11.008
- Kay, R.W., 1978. Aleutian magnesian andesites: melts from subducted Pacific ocean crust. Journal of Volcanology and Geothermal Research, 4(1–2): 117–132. https://doi.org/10.1016/0377-0273(78)90032-x
- Kay, S.M., Mpodozis, C. and Coira, A.B., 1999. Neogene magmatism, tectonism, and mineral deposits of the central Andes (22° to 33° S latitude). In: B.J. Skinner (Editor), Geology and Ore Deposits of the Central Andes. Society of Economic Geologists, Special Publication 7, Littleton, pp. 27–59. https://doi.org/10.5382/sp.07.02
- Kennedy, G.C., 1955. Some aspects of the role of water in the rock melts. In: A. Poldervaart (Editor), Crust of the Earth: A symposium. Geological Society of America, Special Publication 62, Boulder, pp. 489–503. https://doi.org/10.1130/spe62-p489
- Khodami, M., 2009. Petrology of Plio-Quaternary volcanic rocks in south-east and north-west of Isfahan. Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 174 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://lib.ui.ac.ir/dL/search/default.aspx?Term =6027&Field=0&DTC=3
- Kinzler, R.J., 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical

Research, 102(B1): 853–874. https://doi.org/10.1029/96jb00988

- Le Maitre, R.W., Streckeisen, A., Zanettin, B. and Le Bas, M.J., 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Sub-Commission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, UK, 236 pp. https://doi.org/10.1017/cbo9780511535581
- Martin, H., 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753–756. https://doi.org/10.1130/0091-7613(1986)14<753:eosagg>2.0.co;2
- Martin, H.,1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3): 411–429. https://doi.org/10.1016/s0024-4937(98)00076-0
- Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1–2): 1–24.

https://doi.org/10.1016/j.lithos.2004.04.048

- Maury, R.C., Sajona, F., Pubellier, M., Bellon, H. and Defant, M., 1996. Fusion de la croute oceanique dans las zones de subdction/collision recentes: l, example de Mindanao (Philippines). Bulletin de la Societe Geologique de France, 167(5): 579–595. Retrieved June 2021 from 11, https://pubs.geoscienceworld.org/sgf/bsgf/artic le-abstract/167/5/579/122854/Fusion-de-lacroute-oceanique-dans-les-zonesde?redirectedFrom=fulltext
- McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, G., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Ndariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M.N. and Veis, G., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105(B3): 5695– 5719. https://doi.org/10.1029/1996jb900351

121

- McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D. and Tealeb, A., 2003. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International, 155(1): 126–138. https://doi.org/10.1046/j.1365-246x.2003.02023.x
- McKenzie, D.P. and O'Nions, R.K., 1991. Partial melt distribution from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021–1091. https://doi.org/10.1093/petrology/32.5.1021
- McKenzie, D.P. and O'Nions, R.K., 1995. The source regions of Ocean Island Basalts. Journal of Petrology, 36(1): 133–159. https://doi.org/10.1093/petrology/36.1.133
- Meen, J.K., 1987. Formation of shoshonites from calc-alkaline basalt magmas: geochemical and experimental constraints from the type locality. Contributions to Mineralogy and Petrology, 97(3): 333–351. https://doi.org/10.1007/bf00371997
- Moradizadeh, N., 2012. Study of volcanic rocks of Barzrood (NE of Isfahan) with emphasis on ore deposit. M.Sc. Thesis, University of Isfahan, Isfahan, Iran, 100 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://lib.ui.ac.ir/dL/search/default.aspx?Term =9557&Field=0&DTC=3
- Movahedian Atar, F., 2008. Petrology and Geology of Tertiary Volcanic Rocks from North Kuhpaye (NE of Esfahan). M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 102 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://parseh.modares.ac.ir/thesis/2031676
- Moyen, J.F. and Martin, H., 2012. Forty years of TTG research. Lithos, 148(1): 312–336. https://doi.org/10.1016/j.lithos.2012.06.010
- Müller, D., Rock, N.M.S. and Groves, D.I., 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. Mineralogy and Petrology, 46(4): 259–289. https://doi.org/10.1007/bf01173568
- Omrani, J., Agard, P., Witechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008. Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106(3–4): 380–398. https://doi.org/10.1016/j.lithos.2008.09.008

- Osborn, E., 1959. Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Journal of Science, 257(9): 609–647. https://doi.org/10.2475/ajs.257.9.609
- Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: R.S. Thorpe (Editor), Andesites. Wiley, New York, pp. 525–548. Retrieved June 11, 2021 from

https://www.researchgate.net/publication/3047 49002_Trace_Element_Characteristics_of_Lav as from Destructive Plate Boundaries

Pearce, J.A., 1983. Role of sub-continental lithosphere in magma genesis at active Continental margins. In: C.J. Hawkesworth and M.J. Norry (Editors), Continental Basalts and Mantle Xenoliths. Shiva, Nantwich, pp. 230–249. Retrieved June 11, 2021 from https://www.researchgate.net/publication/2474 34731_Role_of_the_sub-

continental_lithosphere_in_magma_genesis_at _active_continental_margin

- Sayari, M., 2015. Petrogenesis and evolution of Oligocene-Pliocene volcanism in the central part of Urumieh-Dokhtar Magmatic Arc (NE of Isfahan). Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 195 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://lib.ui.ac.ir/dl/search/default.aspx?Term =12518&Field=0&dtc=3
- Sayari, M., Sharifi, M., 2016, Application of clinopyroxene chemistry to interpret the physical conditions of ascending magma, a case study of Eocene volcanic rocks in the Ghohrud area (North of Isfahan). Journal of Economic Geology, 8(1): 61–78. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V8I1.38857
- Sayari, M., Sharifi, M., 2018. Anomalies in the depth of the asthenospheric mantle: key to the enigma of adakites in the Urumieh-Dokhtar magmatic arc. Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 195(3): 227– 245. https://doi.org/10.1127/njma/2018/0093
- Sayari, M., Sharifi, M., Ahmadian, J., 2014. Determining magmatic series and oxygen fugacity of volcanic rocks in the east of Kamu, north of Isfahan, based on biotite chemistry. Journal of Economic Geology, 6(1): 149–161. (in Persian with English abstract)

https://doi.org/10.22067/ECONG.V6I1.21362

- Saunders, A.D., Tarney, J. and Weaver, S.D., 1980. Transverse geochemical variations across the Antarctic peninsula: implications for the genesis of calc-alkaline magmas. Earth and Planetary Science Letters, 46(3): 344–360. https://doi.org/10.1016/0012-821x(80)90050-3
- Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors.), magmatism in ocean basins. Geological Society of London Publications, Special Publication 42, London, pp. 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
- Sisson, T.W. and Grove, T.L., 1993. Experimental investigations of the role of H₂O in calcalkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113(2): 143–166. https://doi.org/10.1007/bf00283225
- Stern, C.R. and Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263–281. https://doi.org/10.1007/s004100050155
- Tamizi, N., 2013. Petrography of volcanic rocks in the north of Aliabad mining area (NW of Nain) with emphasis on recent perlite and bentonite exploration works. M.Sc. Thesis, University of Isfahan, Isfahan, Iran, 95 pp. (in Persian with English abstract)
- Taylor, W.R., Rock, N.M.S., Groves, D.I., Perring, C.S. and Golding, S.D., 1994. Geochemistry of Archean shoshonitic lamprophyres from the Yilgarn block, Western Australia: Au abundance and association with gold mineralization. Applied Geochemistry,

9(2): 197–222. https://doi.org/10.1016/0883-2927(94)90007-8

- Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1): 29– 60. https://doi.org/10.1093/petroj/39.1.29
- Wang, Q., McDermott, F., Xu, J.F., Bellon, H. and Zhu, Y.T., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology, 33(6): 465– 468. https://doi.org/10.1130/g21522.1
- Wang, Q., Wyman, D.A., Xu, J.F., Jian, P., Zhao, Z.H., Li, C.F., Xu, W., Ma, J.L. and He, B., 2007. Early Cretaceous adakitic granites in the Northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609–2636.

https://doi.org/10.1016/j.gca.2007.03.008

Wang, Q., Wyman, D.A., Xu, J.F., Wan, Y., Li, C.H., Zi, F., Jiang, Z., Qiu, H., Chu, Zh., Zhao, Z.H. and Dong, Y.H., 2008. Triassic Nbenriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slabderived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155(4): 473–490.

https://doi.org/10.1007/s00410-007-0253-1

Yogodzinski, G.M., Kay, R.W., Volynets, O.N., Koloskov, A.V. and Kay, S.M., 1995. Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin, 107(5): 505–519. https://doi.org/10.1130/0016-7606(1995)107<0505:maitwa>2.3.co;2

128

COPYRIGHTS

©2021 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.

How to cite this article

Sayari, M. and Sharifi, M., 2021. Evolution of the volcanic mechanism in the central part of the Urumieh-Dokhtar magmatic arc. Journal of Economic Geology, 13(1): 113–144. (in Persian with English abstract) https://dx.doi.org/10.22067/econg.v13i1.85642

Ο

ΒY

(cc)

Journal of Economic Geology Vol. 13, No. 1 (2021) ISSN 2008-7306

زمین شناسی اقتصادی جلد ۱۳، شماره ۱ (سال ۱۴۰۰) صفحات ۹، ۱۰

Evolution of the volcanic mechanism in the central part of the Urumieh-Dokhtar magmatic arc

Mohammad Sayari^{1*} and Mortaza Sharifi²

Department of Water Resources Basic Studies, Regional Water Company of Isfahan, Isfahan, Iran
 Department of Geology, Faculty of Science, University of Isfahan, Isfahan, Iran

Submitted: Feb. 16, 2020 Accepted: May 16, 2020

Keywords: Volcanism, Cenozoic, Partial melting, Adakite, Urumieh-Dokhtar

Introduction

Cenozoic volcanic activities in the Urumieh-Dokhtar Magmatic Arc (UDMA) have occurred in three main pulses of Eocene, upper Oligocene-Pliocene, and Pio-Quaternary (Dilek et al., 2010, Sayari, 2015). Magmatic activities in the UDMA until a few years ago were marked with calcalkaline and occasionally shoshonitic signatures. Recent studies have reported post-collisional adakites in some parts of the UDMA (e.g., Ghadami et al., 2008; Omrani et al., 2008; Savari, 2015; Savari and Sharifi, 2018). Since magmatic genesis of calc-alkaline, shoshoitic, and especially adakites are absolutely different, variation in the volcanism nature of Iran is a key to recognition of geodynamic evolution of Iran. This study tries to analyze the volcanic evolution in the central part of the UDMA by systematically processing of geochemical database for three main Cenozoic volcanic pulses.

Materials and methods

Whole rock reliable ICP-MS analysis data from scientific texts having exact location coordinates were gathered to form a geochemical geodatabase which includes 99 samples. This database spatially covers around 200 km in the central part of the UDMA from 51°15′E and 33°47′N (north of Isfahan) to 52°57′E and 32°35′N (east of Isfahan).

Results

Analysis of the geochemical geodatabase indicates that none of the samples belong to

*Corresponding authors Email: m.sayari@gmail.com

alkaline and tholeiitic magmatic series. About 71 percent of group 1 (volcanic pulse of Eocene) are calc-alkaline, and the remaining 29 percent are shoshonitic. About 67 percent of group 2 (volcanic pulse of Oligocene-Miocene) are shoshonitic, and the remaining 33 percent are calc-alkaline. About 88 percent of group 3 (volcanic pulse of Plio-Quaternary) are adakite, and the remaining nearly 12 percent are both calcalkaline/shoshonitic (samples CN4, JS13, OG4 and SK1 of Khodami, 2009). Adakitic samples are situated in two areas in Joshaghan-Ghohrud and Kajan-Kahang. Sayari and Sharifi (2018) showed that there is a correlation between UDMA adakites and positive lithospheric thickness anomalies. They showed that adakites in the central part of UDMA are restricted to 4 regions exactly where lithosphere and crust are anomalously thicker than the surrounding. In the where areas adakites lie, lithosphereasthenosphere boundary (LAB) is situated deeper than 212 km (Sayari and Sharifi, 2018). The geochemical aspect of the studied adakites which are all related to the third volcanic pulse of UDMA shows that they have been derived from the subducted slab. They do not have adakite-like or crust-derived adakites characteristics.

Discussion

The results indicate that volcanic activities from Eocene to Quaternary have evolved from calcalkaline to shoshonitic signatures and then turned into adakitic nature. Calc-alkaline and shoshonitic magmatism resulted from partial melting of the mantle wedge, while adakitic magmatism resulted from partial melting of the subducted slab. This means that the origin of the third volcanic pulse has shifted from mantle wedge to slab. According to the La/Sm versus La diagram (Aldanmaz, 2000) calc-alkaline samples have been derived from about 15% partial melting of the spinelgarnet lherzolite, and the shoshonitic samples have resulted from about 3% partial melting of the spinel-garnet lherzolite. Based on La/Yb versus Yb diagram (Bourdon et al., 2002), adakites from Kajan-Kahang have been derived from about 10% partial melting of the garnet amphibolite. Moreover, the Adakites from Joshaghan-Ghohrud have resulted from about 6% partial melting of the hornblende eclogite.

Acknowledgment

The authors would like to thank the management of the Regional Water Company of Isfahan, Graduate School of the University of Isfahan, and Ms. Fatemeh Darvishzadeh.T

References

- Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2): 67–95. https://doi.org/10.1016/s0377-0273(00)00182-7
- Bourdon, E., Eissen, J.P., Gutscher, M.A., Monzier, M., Samaniego, P., Robin, C., Bollinger, C. and Cotton, J., 2002. Slab melting and slab melt metasomatism in the Northern Andean Volcanic Zone: adakites and high-Mg andesites from Pichincha volcano (Ecuador). Bulletin de la Société Géologique de France, 173(2): 195–206. https://doi.org/10.2113/173.3.195
- Dilek, Y., Imamverdiyev, N. and Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic

volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52(4–6): 536–578.

- Ghadami, G., Moradian, A. and Mortazavi, M., 2008. Post-collisional Plio-Pleistocene adakitic volcanism in Central Iranian volcanic belt: geochemical and geodynamicimplications. Journal of Sciences, Islamic Republic of Iran, 19(3): 223–235. 2021 Retrieved June 11, from https://journals.ut.ac.ir/pdf 31896 3d5550b30 b2590c75543469f305410a2.html
- Khodami, M., 2009. Petrology of Plio-Quaternary volcanic rocks in south-east and north-west of Isfahan. Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 174 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://lib.ui.ac.ir/dL/search/default.aspx?Term =6027&Field=0&DTC=3
- Omrani, J., Agard, P., Witechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008. Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106(3–4): 380–398. https://doi.org/10.1016/j.lithos.2008.09.008
- Sayari, M., 2015. Petrogenesis and evolution of Oligocene-Pliocene volcanism in the central part of Urumieh-Dokhtar Magmatic Arc (NE of Isfahan). Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 195 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://lib.ui.ac.ir/dl/search/default.aspx?Term =12518&Field=0&dtc=3
- Sayari, M., Sharifi, M., 2018. Anomalies in the depth of the asthenospheric mantle: key to the enigma of adakites in the Urumieh-Dokhtar magmatic arc. Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 195(3): 227– 245. https://doi.org/10.1127/njma/2018/0093