مطالعه رفتار عناصر نادر خاکی، سیالات درگیر و ایزوتوپ های پایدار اکسیژن و گوگرد در کانسار آهن اسکارنی ظفرآباد، شمال غرب دیواندره، استان کردستان

نوع مقاله : علمی- پژوهشی

نویسندگان

بوعلی سینا

چکیده

کانسار آهن اسکارنی ظفرآباد در غرب ایران و در حاشیه شمالی زون سنندج- سیرجان، در 12 کیلومتری شمال غربی شهرستان دیواندره واقع شده است. بر اساس مطالعات زمین شناسی سنگهای دگرگونی (کالک شیستی) و آهکی پیکره اصلی سنگهای رخنمون یافته را در منطقه تشکیل می‌دهند. کانسار آهن ظفرآباد یک توده مگنتیتی عدسی شکل و شیب دار است که در همبری سنگهای شیستی و آهکی قرار گرفته است. کانسار بیشتر با واحدهای شیستی در آمیخته است و آمیختگی کمتری با سنگ آهکها دارد. کانه اصلی و با ارزش این کانسار مگنتیت است و هماتیت به صورت ثانویه از اکسیداسیون مگنتیت با مقادیر کمتر ایجاد شده است. بر اساس تجزیه و تحلیل مؤلفه‌های محاسبه‌شده برای عناصر نادر خاکی مانندEu/Eu* ، Ce/Ce* و cn(Pr/Yb) در فاز مگنتیتی این کانسار و دامنه تغییرات مقادیر 18Oδ در این کـانی که بین 93/5- تا 28/0- ‰ می باشد، می توان نتیجه گیری کرد که منشأ این کانسار از سیالهای با منشأ ماگمایی است. این سیال در هنگام مخلوط شدن با آب جوی به تعادل ایزوتوپی مجدد رسیده است. ایـن فرضیـه با محیط بُرشی تشکـیل کانسـار و تأثیر آبهای جـوی در امتـداد این زون تطـابق کاملی دارد. مقادیر34S δ در پیریت های کانسار ظفرآباد کمتر از ‰ 2 است. بر اساس مطالعات ایزوتوپی گوگرد، مقدار 34SH2Sδ سیال کانه ساز بین ‰ 27/0 تا 98/0 محاسبه شد که نشان گر ماگمایی بودن منشأ گوگرد سیال کانه ساز است. مطالعه سیالات درگیر در کوارتز و کلسیت همراه کانسنگ مگنتیت نشان می دهد که این دسته از سیالات گرمابی در دمای بین 211 تا بیش از ºC380، با شوری 8/4 تا 9/49 درصد وزنی معادل NaCl تشکیل شده اند. مطالعات صورت گرفته همگی مؤید حضور دو نوع سیال ماگمایی و جوی در کانه زایی است که نقش آبهای ماگمایی در این بین بارزتر بوده است.

کلیدواژه‌ها


Appel, P.W.U., 1983. Rare earth element in the early Archaen Isua iron-formation, west Greenland. Precambrian Research, 20(2-4): 243- 258.
Bodnar, R.J., 1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties on inclusions fluid. Economic Geology, 78(3): 535- 542.
Bodnar, R.J. and Vityk, M.O., 1994. Interpretation of micro thermometric data for H2o-NaCl fluid inclusions. In: B. De Vivo and M.L. Frezzotti (Editors), fluid inclusions in Minerals, Methods and Applications. Fluids Research Laboratory, Dept. of Geological Sciences, Virginia Tech, Virginia, pp. 117-130.
Bodnar, R.J., 1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties on inclusions fluid. Economic Geology, 78(3): 535- 542.
Borisenko, A.S., 1977. Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method. Geologiya i Geofizika (Soviet Geology and Geophysics), 18(8): 16-27 (11-19).
Bowman, J.R., O,Neil, J.R. and Essene, E.J., 1985. Contact skarn formation at Elkhorn, Montana.1I Origin and evolution of C-O-H skarn fluids. American Journal of Science, 285(7): 621- 660.
Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: P. Henderson (Editor), Rare earth element geochemistry, Elsevier, California, pp. 63- 114.
Cole, D.R., Horita, J., Eniamin, V., Polyakov, V.B., Valley, J.W., Spicuzza, M.J. and Coffey, D.W., 2004. An experimental and theoretical determination of oxygen isotope fractionation in the system magnetite-H2O from 300 to 800C. Geochimica et Cosmochimica Acta, 68(17): 3569- 3585.
Darvishzadeh, A., 1991. Geology of Iran. Danesh-e Emrooz Publication, Tehran, 635 pp. (in Persian)
De Sitter, J., Govaret, A., De Grave, E., Chamaere, D. and Robrecht, G., 1977. Mossbauer Study of Ca2+- containing magnetites. Physica Status Solidi, 43(2): 619- 624.
Dupuis, C. and Beaudoin, G., 2011. Discriminant digrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralum Deposita, 46(4): 319- 335.
Faure, G. and Mensing, A., 2005. Principles of isotope geology. 2th Edition, Johm Weily and Sons, New York, 460 pp.
Frietsch, R. and Pendahl, J.A., 1995. Rare earth elements in apatite and magnetite in kiruna-type iron ores and some other Iron types. Ore Geology Reviews, 9(6): 489- 510.
Gehlen, K.V., Nielsen, H., Chunnett, I. and Rozendaal, A., 1983. Sulphur isotope in metamorphosed Percambrian Fe-Pb-Zn-Cu sulphides and barite at Aggeneys and Gamsberg, South Africa. Mineralogical Magazine, 47: 481- 6.
Hedenquist, J.W. and Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519- 527.
Hoefs, J. (Translated by Alirezaei, S.), 2008. Stable isotope geochemistry. Iran University Press, Tehran, 332 pp. (in Persian)
Jiang, S.Y., Chen, Y.Q., Ling, H.F., Yang, H.J., Feng, H.Z. and Ni, P., 2006. Trace and rare-earth element geochemistry and pb-pb dating of black shales and intercalated Ni-Mo-PGE-Au sulphide ores in Lower Cambrian Strata, Yangtze Platform, South China. Mineralum Deposita, 41(5): 435- 467.
Jiang, S.Y., Zhao, H.X., Chen, T.Y., Yang, T., Yang, J.H. and Ling, H.F., 2007. Trace and rare earth element geochemistry of phosphate nodules from the Lower Cambrian blak shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province China. Chemical Geology, 244(3-4): 584- 604.
Karadag, M.M., Kupeli, S., Arik, F., Ayhan, A., Zedef, V., and Doyen, A., 2009. Rare earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/konya-Southern Turkey). Chemie der Erde- Geochemistry, 69(2): 143- 159.
Kato, Y., 1999. Rare Earth Elements as an Indicator to Origins of skarn deposits: Examples of the kamioka Zn-Pb and Yoshiwara-Sannotake Cu (-Fe) deposits in Japan. Resource Geology, 49(4): 183- 198.
Marschik, R., Spikings, R. and Kuscu, I., 2008. Geochronology and stable isotope signature of alteration related to hydrothermal magnetite ores in Central Anatolia, Turkey. Mineralium Deposita, 43(1): 111- 124.
Meinert, L.D., 1995.Coppositional variation of igneous rocks associated with skarn deposits- Chemical evidence for a genetic connection between petrogenesis and mineralization. In: J.F.H. Thompson (Editor), Magmas, fluids and ore deposits. Mineralogical Association of Canada, Canada, pp. 401- 418.
Ohmoto, H., 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551-579.
Ohmoto, H. and Rye, R.O., 1979. Isotopes of sulfur and carbon. In: H.L. Barnes (Editor), Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, pp. 509- 567.
Raju, P.V.S., 2009. Petrography and geochemical behavior of trace, REE and precious metal signatures of sulphidic banded iron formations from the Chikkasid- davanahalli area, Chitradurga schist belt, India. Journal of Asian Earth Science, 34(5): 663- 673.
Roedder, E., 1984. Fluid inclusions, 12. Mineralogical Society of America, Reviews in Mineralogy, Virginia, 646 pp.
Rollinson, H.R., (Translated by Moore F., Modaberi, S.), 2005. Using geochemical data. Iran University Press, Tehran, 422 pp. (in Persian)
Rose, A.W., Herrick, D.C. and Deines, P., 1985. An oxygen and sulfur isotope study of skarn-type magnetite deposits of the Cornwall type, Southeastern Pennsylvania. Economic Geology, 80(2): 418- 443.
Rye, R.O., 1993. The evolution of magmatic fluids in epithermal environment: the stable isotope perspective. Economic Geology, 88(3): 733- 752.
Shahabpour, J., 1994. Post-mineralization breccias dike from the sarcheshmeh porphyry copper deposit, Kerman, Iran. Exploration and Mining Geology, 3(1): 39- 43.
Sheppard, S.M.F. and Epstein, S., 1970. D/H and 18O/16O ratios of minerals of possible mantle or lower crustal origin. Earth and Planetary Science Letters, 9(3): 232- 239.
Stockiln, J., 1977. Structural correlation of the Apline range between Iran and central Asia. Memoire Hors Serve - Dela Societe Geologique De France, 8: 333- 353.
Sun, H., Wu, J., Yu, P. and Li, J., 1998. Geology, geochemistry and sulfur isotope composition of the Late Proterozoic Jingtieshan (Superior-type) hematite-jasper-barite iron ores deposits associated with stratabound Cu mineralization in the Gansu Province, China. Mineralium Deposita, 34(1): 102- 112.
Taylor, B.E. and O,Neil, J.R., 1977. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada. Contributions to Mineralogy and Petrology, 63(1): 1- 49.
Taylor, H.P., 1979. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: H.L. Barnes (Editor), Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, pp. 229-302
Taylor, H.P. JR., 1980. The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematic in igneous rocks. Earth and Planetary Science Letters, 47(2): 243- 254.
Taylor, S.R. and McLennan, S.M., 1991. The continental Crust: its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, 312 pp.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229- 272.
CAPTCHA Image