##plugins.themes.bootstrap3.article.main##

غلامرضا میرزابابائی مهرداد بهزادی محمدرضا رضوانیان زاده محمد یزدی محمد قنادی مراغه

چکیده

منطقه بافق میزبان بزرگ‌ترین کانسارهای مگنتیت- آپاتیت در ایران است. ویژگی‌های کانی‌شناختی واحد برشی به‌عنوان یکی از مهم‌ترین رخدادهای زمین‌شناسی در منطقه بافق در ایران مرکزی و همچنین کانه‌زایی Th-REE در این واحد در کانسار سه‌چاهون مورد بررسی قرارگرفته است. سنگ‌های برشی اغلب در مجاورت و یا در داخل کانسار سه­چاهون تشکیل‌شده و از نظر سنی، جوان‌تر است و متشکل از قطعاتی با لیتولوژی عمده سنگ‌های آتشفشانی و کانی‌های مگنتیت، تیتانومگنتیت، کلسیت، آمفیبول، اپیدوت، آپاتیت، اسفن و کانی‌های دیگر (کلریت، سرپانتین) است. سنگ‌های متعلق به این واحد اغلب دارای تمرکزهایی از کانی‌های Th-REE هستند که مربوط به کانه‌زایی عناصر کمیاب خاکی به‌صورت فسفات و توریم به‌صورت سیلیکات در این واحد سنگی است. بر اساس بررسی‌های کانی‌شناسی، سیلیکات‌های توریم در دو شکل بلورین، یکی منوکلینیک (هوتونیت) و دیگری تتراگونال (توریت)، در همراهی با فلدسپارها،  اکتینولیت، مگنتیت و کربنات به‌صورت پاراژنز در واحد برشی تشکیل شده‌اند. بررسی‌های زمین‌شناسی انجام‌شده بیانگر نقش سیالات مشتق از ماگماهای کالک‌آلکالن تشکیل‌شده در موقعیت کمان ماگمایی (حاشیه قاره‌ای فعال) به‌عنوان عامل تأمین عناصر کمیاب خاکی و توریم در واحد برشی است. بر اساس شواهد صحرایی، کانی‌شناسی و ژئوشیمیایی، انتقال بخش قابلتوجهی  از توریم توسط کمپلکس‌های کربناتی در شرایط قلیایی و محیط احیایی صورت‌گرفته است.

جزئیات مقاله

کلمات کلیدی

کانه‌ زایی Th-REE, واحد برشی, ماگمای کالک‌ آلکالن, کانسار سه‌ چاهون, منطقه بافق

مراجع
Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J.M. and Homam, S.M., 2011. Two-sided asymmetric subduction; implications for tectonomagmatic and metallogenic evolution of the Lut Block, eastern Iran. Journal of Economic Geology, 3(1): 1–14. (in Persian)
Audétat, A. and Keppler, H., 2005. Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth and Planetary Science Letters, 232(3–4): 393–402.
Bonyadi, Z., Davidson, G.J., Mehrabi, B., Meffre, S. and Ghazban, F., 2011.Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry. Chemical Geology, 281(3–4): 253–269.
Boynton, W.V., 1984. Cosmochemistry of the rare earth elements; meteorite studies. In: P. Henderson, (Editor), Rare earth element geochemistry. Elsevier, Amsterdam, pp. 63–114.
Brenan, J.M., Shaw, H.F., Phinney, D.L. and Ryerson, F.J., 1994. Rutile–aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island arc basalts. Earth and Planetary Science Letters, 128(3–4): 327–339.
Daux, V., Crovisier, J.L., Hemond, C. and Petit, J.C., 1994. Geochemical Evolution of Basaltic Rocks Subjected to Weathering: Fate of the Major Elements, Rare Earth Elements, and Thorium. Geochimica et Cosmochimica Acta, 58(22): 4941-4954.
Deymar, S., Behzadi, M., Yazdi, M. and Rezvanianzadeh, M.R., 2019. Relation of alkali-metasomatism and Ti-REE-U (Th) mineralization in the Saghand mining district, Central Iran. Journal of Economic Geology, 10(2): 471–496. (in Persian with English abstract)
Foley, S.F., Barth, M.G. and Jenner, G.A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64(5): 933–938.
Förster, H. and Jafarzadeh, A., 1994. The Bafq mining district in Central Iran - a highly mineralized Infracambrian volcanic field. Economic Geology, 89(8): 1697–1721.
Frondel, С., 1956. Mineral composition of gummite. American Mineralogist, 41(7–8): 539-568.
Gorton, M.P. and Schandl, E.S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting For Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5): 1065–1073.
Green, T.H. and Adam, J., 2003. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650–700 °C. European Journal of Mineralogy, 15(5): 815–830.
Haghipour, A., 1977. Geological map of the Biabanak-Bafq area, scale 1:500,000. Geological Survey of Iran.
Haghipour, A. and Pelissier, G., 1977. Geology of the Saghand Sector. In: A. Haghipour, N. Valeh, G. Pelissier and M. Davoudzadeh (Editors), Explanatory Text of the Ardekan Quadrangle Map. Geological Survey of Iran, Tehran, pp. 10–68.
Hawkesworth, C.J., Turner, S.P., McDermott, F., Peate, D.W. and Van Calsteren, P., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer from Subducted Crust. Science, 276(5312): 551–555.
Khoshnoodi, K., 2016. Mineralogy, geochemistry and mineralization of radioactive elements with special emphasis on thorium in the Choghart ore deposit in the Bafq region, central Iran. Ph.D. Thesis, Shahid Beheshti University, Tehran, Iran, 216 pp.
Khoshnoodi, K., Behzadi, M., Gannadi-maragheh, M. and Yazdi, M., 2017. Alkali Metasomatism and Th-REE Mineralization in the Choghart deposit, Bafq district, Central Iran. Geologia Croatica, 70(1): 53–69.
Klemme, S., Prowatke, S., Hametner, K. and Gunther, D., 2005. Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochimica et Cosmochimica Acta, 69(9): 2361–2371.
Mirzaei, Z., 2014. Petrography and geochemistry of rhyolite rocks in the Se-Chahun iron oxide deposite, Bafq mining district, Central Iran. Journal of Biodiversity and Environmental Sciences, 5(6): 329–337.
Mohseni, S., 2007. Investigation on the Rapitan banded iron formation and mineralization in central Iranian iron ore field. M.Sc. Thesis, Shahid Bahonar University, Kerman, Iran, 284 pp.
Mohseni, S. and Aftabi, A., 2012. Comment on Significance of apatite REE depletion and monazite inclusions in the brecciated Se-chahun iron oxideapatite deposit, Bafq district. In: Z. Bonyadi, G.J. Davidson, B. Mehrabi, S. Meffre and F. Ghazban (Editors), Insights from paragenesis and geochemistry. Chemical Geology, Amsterdam, pp. 378–381.
Mokhtari, M.A., Hossein Zadeh, G. and Emami, M.H., 2013. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. Journal of Earth System Science, 122(3): 795–807.
National Iranian Steel Corporation (NISCO), 1975. Detailed exploration of Se-Chahun iron ore deposit in Central Iran. National Iranian Steel Corporation (NISCO), Tehran, Report 1, 117 pp.
Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. John Wiley and Sons, New York, 724 pp.
Rajabi, A., Canet, C., Rastad, E. and Alfonso, P., 2014. Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn Pb deposits of the Early Cambrian Zarigan Chahmir Basin, Central Iran. Ore Geology Reviews, 64(6): 328–353.
Rajabi, A., Rastad, E., Alfonso, P. and Canet, C., 2012. Geology, ore facies and sulfur isotopes of the Koushk vent-proximal sedimentary-exhalative deposit, Posht-e-Badam block, Central Iran. International Geology Review, 54(14):1635–1648
Rajabzadeh, M.A., Hoseini, K. and Moosavinasab, Z., 2013. Mineralogical and geochemical studies on apatites and phosphate host rocks of Esfordi deposit, Yazd province, to determine the origin and geological setting of the apatite. Journal of Economic Geology, 6(2): 331–353. (in Persian with English abstract)
Ramezani, J. and Tucker, R.D., 2003. The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(7): 622–665.
Rostami, M. and Tale Fazel, E., 2019. Geochemistry, mineralization and alkali-Fe oxide alteration of the Lake Siah iron±apatite deposit (northeastern Bafq), Bafq-Saghand metallogenic province. Journal of Economic Geology, 10(2): 587–616. (in Persian with English abstract)
Schmidt, A., Weyer, S., John, T. and Brey, G.P., 2009. HFSE systematics of rutile-bearing eclogites: new insights into subduction zone processes and implications for the earth's HFSE budget. Geochimica et Cosmochimica Acta, 73(2): 455–468
Sun, S.S. and McDonough, W.F., 1989. Chemical and Isotopic Systematic of Oceanic Basalt: Implication for Mantle Composition and Processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins. Geological Society, London, pp. 313–345.
Titayeva, N.A., 1994. Nuclear geochemistry. Chemical Rubber Company, Florida, 304 pp.
Torab, F.M., 2008. Geochemistry and Metallogeny of Magnetite- apatite Deposits of the Bafq Mining District, Central Iran. Ph.D. Thesis, Clausthal University of Technology, Harz, Germany, 131 pp.
Torab, F.M. and Lehmann, B., 2007. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine, 71(3): 347–363.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187.
ارجاع به مقاله
میرزابابائی غ., بهزادی م., رضوانیان زاده م., یزدی م., & قنادی مراغه م. (2019). واحد برشی و کانه‌ زایی Th-REE در کانسار سه‌ چاهون، منطقه معدنی بافق، ایران مرکزی. زمین‌شناسی اقتصادی, 11(1), 105-120. https://doi.org/10.22067/econg.v11i1.65876
نوع مقاله
علمی- پژوهشی