##plugins.themes.bootstrap3.article.main##

علیرضا زراسوندی محسن رضایی مجید طاشی زهرا فریدونی مدینه ساعد

چکیده

توده‌های گرانیتوئیدی از جمله سنگ‌های نفوذی مهم مرتبط با کانه‌زایی‌های مس پورفیری در ایران هستند که اغلب در دو زون ساختاری ارومیه‌- دختر و سنندج‌- سیرجان، هم به‌صورت کانه‌دار و هم به‌صورت عقیم دیده می‌شوند. توده‌های گرانیتوئیدی در این دو زون ساختاری به‌ترتیب در دوره‌های مزوزوئیک و سنوزوئیک بر اثر فرورانش لیتوسفر اقیانوسی نئوتتیس و ماگماتیسم حاصل از برخورد و ذوب‌بخشی پوسته پایینی تشکیل شده‌اند. از جمله زون‌های ساختاری مهم همراه با کانه‌زایی مس پورفیری، زون ساختاری ارومیه‌– دختر است که شامل توده‌های گرانیتوئید بارور همچون توده نفوذی‌های سرچشمه، سونگون، میدوک، دره زرشک علی‌آباد، پرکام و دالی است. به موازات این زون آتشفشانی- نفوذی، زون ساختاری سنندج- سیرجان است که توده‌های گرانیتوئیدی غیر بارور نظیر توده‌های نفوذی الوند، حسن رباط، سیاه‌کوه، بروجرد، آستانه و الیگودرز را شامل می‌شود. بر اساس بررسی‌های انجام‌شده، از جمله ویژگی‌های زمین‌شیمیایی توده‌های گرانیتوئیدی بارور در زون ارومیه‌– دختر، می‌توان به آنومالی مثبت Eu، غنی‌شدگی LREE به HREE و نسبت‌های بالای Lan/Ybn ،Sr/Y، Dyn/Ybn، Lan/Smn اشاره‌کرد. اما در مقابل ویژگی‌های زمین‌شیمیایی بارز توده‌های گرانیتوئیدی نابارور در زون ساختاری سنندج‌- سیرجان نیز می‌توان آنومالی منفی Eu، شیب ملایم از LREE به  HREEو نسبت‌های پایین Lan/Ybn، Sr/Y، Dyn/Ybn، Lan/Smn را بیان‌کرد. تمامی ویژگی‌های یاد‌شده، نشان‌دهنده این است که در قیاس با توده‌های بارور زون ارومیه‌- دختر، توده‌های گرانیتوئیدی جای‌گیر‌ شده در زون سنندج‌– سیرجان به‌علت عدم ضخیم‌شدگی پوسته در زمان فرورانش لیتوسفر اقیانوسی، کنترل تفریق ماگمایی توسط تبلور‌بخشی پلاژیوکلاز و محتوای آب ماگمایی پایین، دارای توان کانه‌زایی پورفیری نیست. در صورتی‌که جای‌گیری توده‌های گرانیتوئیدها در بازه زمانی الیگومیوسن، ضخیم‌شدگی حاصل از برخورد، تفریق ماگمایی بیشتر توسط تبلور‌بخشی هورنبلند کنترل‌ و موجب پدید‌آمدن احتمالی سنگ‌های شبه آداکیتی بارور و کانه‌زایی‌های مس پورفیری در زون ارومیه‌- دختر شده است.

جزئیات مقاله

کلمات کلیدی

زمین‌ شیمی REE, گرانیتوئید, مس پورفیری, زون ساختاری سنندج– سیرجان, زون ساختاری ارومیه– دختر

مراجع
Aghazadeh, M., 2015. Petrogenesis and U-Pb age dating of intrusive bodies in the Sar Cheshmeh deposit. Scientific Quarterly Journal, Geosciences, 25(97): 291–312. (in Persian with English abstract)
Ahmadian, J., Haschke, M., McDonald, I., Regelous, M., RezaGhorbani, M., Emami, M.H. and Murata, M., 2009. High magmatic flux during Alpine-Himalayan collision: Constraints from the Kal-e-Kafi complex, central Iran. Geological Society of America Bulletin, 121(5–6): 57–868.
Alavi, M., 1980. Tectonostratigraphic evolution of the Zagrosides of Iran. Geology, 8(3): 144–149.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3–4): 211–238.
Aliani, F., Maanijou, M., Sabouri, Z. and Sepahi, A.A., 2012. Petrology, geochemistry and geotectonic environment of the Alvand Intrusive Complex, Hamedan, Iran. Chemie der Erde-Geochemistry, 72(4): 363–383.
Alirezaei, S. and Hassanzadeh, J., 2012. Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: A new record of the Gondwana break-up in Iran. Lithos, 15(151): 122–134.
Arvin, M., Pan, Y.M., Dargahi, S., Malekizadeh, A. and Babaei, A., 2007. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of neotethys subduction. Journal of Asian Earth Sciences, 30(3): 474–489.
Asadi, S., Moore, F. and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Science Reviews, 30(138): 25–46.
Asadi, S., Moore, F., Zarasvandi, A. and Khosrojerdi, M., 2013. First report on the occurrence of CO2-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralisation processes in a continental collision setting. Geologos, 19(4): 301–320.
Ayati, F., Yavuz, F., Asadi, H.H., Richards, J.P. and Jourdan, F., 2013. Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran. International Geology Review, 55(2): 158–184.
Baldwin, J.A. and Pearce, J.A., 1982. Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes. Economic Geology, 77(3): 664–674.
Barzegar, H., 2007. Geology, petrology and geochemical characteristics of alteration zones within the Seridune prospect, Kerman, Iran. Ph.D. thesis, Aachen University, Aachen, Germany, 320 pp.
Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265.
Berberian, F., Muir, I.D., Pankhurst, R.J. and Berberian, M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139(5): 605–614.
Bissig, T., Clark, A.H., Lee, J.K. and von Quadt, A., 2003. Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au–Ag–Cu belt, Chile/Argentina. Mineralium Deposita, 38(7): 844–862.
Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 21(7): 767–780.
Castillo, P.R., 2012. Adakite petrogenesis. Lithos, 134: 304–316.
Chappell, B.W. and White, A.J.R., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489–499.
Daneshjou, M., 2014. Investigation of geology, geochemistry and genetic model of the Dalli porphyry Cu–Au deposit, Delijan, Markazi province. M.Sc. Thesis, Shahid Chamran University, Ahvaz, Iran, 150 pp. (in Persian with English abstract)
Davoudzadeh, M. and Schmidt, K., 1984. A review of the Mesozoic paleogeography and paleotectonic evolution of Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 168(2–3): 182–207.
Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662–665.
Drummond, M.S., Defant, M.J. and Kepezhinskas, P.K., 1996. Petrogenesis of slab-derived trondhjemite–tonalite-dacite/adakite magmas. Geological Society of America Special Papers, 315: 205–215.
Dufek, J. and Bergantz, G.W., 2005. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. Journal of Petrology, 46(11): 2167–2195.
Esna-Ashari, A., Tiepolo, M., Valizadeh, M.V., Hassanzadeh, J. and Sepahi, A.A., 2012. Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan zone, Iran. Journal of Asian Earth Sciences, 43(1): 11–22.
Fatehi, M. and Asadi Haroni, H., 2019. Geophysical signatures of the gold rich porphyry copper deposits: A case study at the Dalli Cu-Au porphyry deposit. Journal of Economic Geology, 10(2): 639–675. (in Persian with English abstract)
Frey, F.A., Chappell, B.W. and Roy, S.D., 1978. Fractionation of rare-earth elements in the Tuolumne Intrusive Series, Sierra Nevada batholith, California. Geology, 6(4): 239–242.
Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6): 683–693.
Ghazi, J.M. and Moazzen, M., 2015. Geodynamic evolution of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran. Turkish Journal of Earth Sciences, 24(5): 513–528.
Ghorashizadeh, M., 1978. Development of Hypogene and Supergene Alteration and Copper Mineralization Patterns, Sar Cheshmeh Porphyry Copper Deposit, Iran. M.Sc. thesis, Brock University, Canada.
Green, T.H. and Pearson, N.J., 1985. Experimental determination of REE partition coefficients between amphibole and basaltic to andesitic liquids at high pressure. Geochimica et Cosmochimica Acta, 49(6): 1465–1468.
Hassanzadeh, J., 1993, Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of c entral Iran (Shahr e Babak area, Kerman Province). Ph.D. thesis, University of California, Los Angeles, Henderson, 420 pp.
Hezarkhani, A., 2006. Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran. Journal of Asian Earth Sciences, 27(3): 326–340.
Hezarkhani, A. and Williams-Jones, A.E., 1998. Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran; evidence from fluid inclusions and stable isotopes. Economic Geology, 93(5): 651–670.
Jazi, M.A., Karimpour, M.H. and Malekzadeh Shafaroudi, A., 2013. Overview of the geochemistry and Rb/Sr, Sm/Nd isotopes of Middle Jurassic and Tertiary granitoid intrusions: a new insight on tectono-magmatism and mineralization of this period in Iran. Journal of Economic Geology, 2(4): 171–198. (in Persian)
Kay, R.W., 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1–2): 117–132.
Kay, S.M. and Mpodozis, C., 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA today, Geological Society of Amreica, 11: 4–9.
Khalaji, A.A., Esmaeily, D., Valizadeh, M.V. and Rahimpour-Bonab, H., 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 29(5): 859–877.
Kirkham, R.V. and Dunne, K.P., 2000. World distribution of porphyry, porphyry-associated skarn, and bulk-tonnage epithermal deposits and occurrences. Geological Survey of Canada, Open File 3792, http://geochem.nrcan.gc.ca/cdogs/content/pub/pub10339_e.htm
Klepeis, K.A., Clarke, G.L. and Rushmer, T., 2003. Magma transport and coupling between deformation and magmatism in the continental lithosphere. Geological Survey of Canada, 13(1): 4– 11.
Lang, J.R. and Titley, S.R., 1998. Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits. Economic Geology, 93(2): 138–170.
Mackenzie, W.S., Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979. The interpretation of igneous rocks. Mineralogical Magazine, 44(333): 115–116.
Macpherson, C.G., Dreher, S.T. and Thirlwall, M.F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3): 581–593.
McInnes, B.I., Evans, N.J., Fu, F.Q. and Garwin, S., 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and geochemistry, 58(1): 467–498.
Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4): 397–412.
Mohammadi Laghab, H., Taghipour, N. and Iranmanesh, M.R., 2012. Distribution pattern of Cu, Mo, Pb, Zn and Fe elements in Sara (Parkam) porphyry copper deposit, Shahr-Babak, Kerman province. Iran. Quarterly Iranian Journal of Geology, 5(20): 17–27. (in Persian with English abstract)
Pourkaseb, H., Zarasvandi, A., Saed, M. and Davoudian Dehkordy, A., 2017. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry. Journal of Economic Geology, 9(1): 73–92. (in Persian with English abstract)
Rapp, R.P. and Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891–931.
Richards, J.P., 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: just add water. Economic Geology, 106(7): 1075–1081.
Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70(45): 323–345.
Richards, J.P., Boyce, A.J. and Pringle, M.S., 2001. Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96(2): 271–305.
Richards, J.P. and Kerrich, R., 2007. Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic geology, 102(4): 537–576.
Richards, J.P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107(2): 295–332.
Sajona, F.G. and Maury, R.C., 1998. Association of adakites with gold and copper mineralization in the Philippines. Comptes Rendus de l'Académie des Sciences-Series IIA- Earth and Planetary Science, 326(1): 27–34.
Shafiei, B., 2010. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic-metallogenetic implications. Ore Geology Reviews, 38(1): 27–36.
Shafiei, B., 2012. Discrimination between productive and non-productive granitoid intrusions in Kerman porphyry copper belt: Results of preliminary petrographic studies. Journa of Advanced Applied Geology, 2(1): 1–7. (in Persian with English abstract)
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3): 265–283.
Shafiei, B. and Shahabpour, J., 2008. Gold distribution in porphyry copper deposits of Kerman region, Southeastern Iran. Journal of Sciences, Islamic Republic of Iran, 19(3): 247–260. (in Persian with English abstract)
Shafiei, B., Shahabpour, J. and Haschke, M., 2008. Transition from Paleogene normal calc-alkaline to Neogene adakitic-like plutonism and Cu-metallogeny in the Kerman porphyry copper belt: response to Neogene crustal thickening. Journal of Sciences, Islamic Republic of Iran, 19(1): 67–84. (in Persian with English abstract)
Shahabpour, J. and Kramers, J.D., 1987. Lead isotope data from the Sar-Cheshmeh porphyry copper deposit, Iran. Mineralium Deposita, 22(4): 278–281.
Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A.A., Shang, C.K. and Abedini, M.V., 2010. Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): New evidence for Jurassic magmatism. Journal of Asian Earth Sciences, 39(6): 668–683.
Sillitoe, R.H., 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67(2): 184–197.
Simmonds, V., Moazzen, M. and Mathur, R., 2016. Investigation on the age of mineralization in the Sungun porphyry Cu-Mo deposit, NW Iran with a regional metallogenic perspective. In European Geosciences Union General Assembly Conference Abstracts, Vienna universiyy, Vienna, Austria.
Sun, W., Zhang, H., Ling, M.X., Ding, X., Chung, S.L., Zhou, J., Yang, X.Y. and Fan, W., 2011. The genetic association of adakites and Cu–Au ore deposits. International Geology Review, 53(5–6): 691–703.
Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1): 29–44.
Taghipour, N., 2007. The application of fluid inclusions and isotope geochemistry as guides for exploration, alteration and mineralization at the Meiduk porphyry copper deposit, Shahr-Babak, Kerman. Unpublished Ph.D. thesis, Shahid Bahonar University, Kerman, Iran, 321 pp.
Taghipour, N. and Mohammadi Laghab, H., 2014. Sara (Parkam) Porphyry Copper Deposit in Kerman, Iran: Petrography, Geochemistry and Geodynamic Setting. Geochemistry Journal, 1(3): 14–26.
Tahmasbi, Z., Castro, A., Khalili, M., Khalaji, A.A. and de la Rosa, J., 2010. Petrologic and geochemical constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran. Journal of Asian Earth Sciences, 39(3): 81–96.
Takin, M., 1972. Iranian geology and continental drift in the Middle East. Nature, 235(5334): 47–150.
Tiepolo, M., Tribuzio, R. and Langone, A., 2011. High-Mg andesite petrogenesis by amphibole crystallization and ultramafic crust assimilation: evidence from Adamello hornblendites (Central Alps, Italy). Journal of Petrology, 52(5): 1011–1045.
Zarasvandi, A., Liaghat, S. and Zentilli, M., 2004. Evolution of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, central Iran, within an orogen-parallel strike-slip system. 30th Annual Meeting of Atlantic Geoscience Society, Moncton, New Brunswick, Canada.
Zarasvandi, A., Liaghat, S. and Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, central Iran. International Geology Review, 47(6): 620–646.
Zarasvandi, A., Liaghat, S., Zentilli, M. and Reynolds, P.H., 2007. 40Ar/39Ar geochronology of alteration and petrogenesis of porphyry copper-related granitoids in the Darreh-Zerreshk and Ali-Abad area, central Iran. Exploration and Mining Geology, 16(1–2): 11–24.
Zarasvandi, A., Rezaei, M., Sadeghi, M., Lentz, D., Adelpour, M. and Pourkaseb, H., 2015. Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA), Iran. Ore Geology Reviews, 70(35): 407–423.
ارجاع به مقاله
زراسوندی ع., رضایی م., طاشی م., فریدونی ز., & ساعد م. (2019). مقایسه زمین‌ شیمیایی و توان کانه‌ زایی مس پورفیری در توده‌ های گرانیتوئیدی زون سنندج‌- سیرجان و زون ارومیه‌- دختر: با استفاده از عناصر نادر خاکی. زمین‌شناسی اقتصادی, 11(1), 1-32. https://doi.org/10.22067/econg.v11i1.64476
نوع مقاله
علمی- پژوهشی