##plugins.themes.bootstrap3.article.main##

احمد جمشیدزائی قدرت ترابی

چکیده

توده نفوذی نیمه عمیق کوارتز مونزودیوریت پورفیری که توسط دایک­‌های تراکی‌آندزیتی ائوسن قطع‌شده است، در جنوب‌غرب جندق (کوه گدارسیاه، شمال‌غرب خرد قاره شرق- ایران مرکزی) رخنمون دارد. بافت اصلی در کوارتز مونزودیوریت­‌ها بافت پورفیریتیک بوده و کانی‌های آن شامل پلاژیوکلاز (آلبیت)، سانیدین، کوارتز، بیوتیت، مسکویت، کلریت،  مگنتیت، کلسیت و آپاتیت است. دایک­‌های ائوسن بافت گرانولار، اینترگرانولار و پورفیریتیک دارند و کانی‌های آن پلاژیوکلاز (آندزین و لابرادوریت)، کلینوپیروکسن (دیوپسید و اوژیت)، سانیدین، فلوگوپیت، کوارتز، آمفیبول، مگنتیت، کلسیت و آپاتیت هستند. داده‌های ژئوشیمیایی سنگ کل از توده نفوذی و دایک­‌های این منطقه ماهیت متاآلومین را برای این سنگ‌­ها مشخص می‌کند. آنالیزهای سنگ­ کل ماهیت کالک­‌آلکالن سنگ­‌های توده نفوذی و ماهیت کالک­‌آلکالن پتاسیم بالا تا شوشونیتی را برای دایک­‌ها نشان می­‌دهد. الگوهای بهنجار‌شده با کندریت و نمودار چند عنصری بهنجار‌شده با گوشته اولیه در کوارتز مونزودیوریت پورفیری و دایک­‌های تراکی‌آندزیتی، غنی‌شدگی از LREE و LILE‌ها و تهی‌شدگی از HFSE‌ها مانند Ta،  Nbو Ti نشان می­‌دهند. در این سنگ‌ها آنومالی مثبت یا منفی مشخص عنصر Eu وجود ندارد. این سنگ­‌ها احتمالاً در محیط فرورانشی متعلق به کمان آتشفشانی تشکیل شده­‌اند. کوارتز مونزودیوریت­ پورفیری دارای مقادیر بالای 89/41-95/17 =La/Yb،  wt.%80/68- 60/64 =SiO2، ppm 434-1855=Sr و 63/168-58/53 =Sr/Y و مقادیر پایین  wt.%10/1- 16/0 =MgO، ppm 11 > Yو ppm 95/0 >Yb هستند و ویژگی­‌های آداکیت‌های غنی از سیلیس را نشان می­‌دهند که از ذوب اسلب اقیانوسی فرورونده ایجاد شده‌اند. دایک­‌های تراکی‌آندزیتی دارای مقادیر 76/59-45/33 =La/Yb،  wt.%60/57- 40/53 =SiO2، ppm 859-2050 =Sr و 125-82/50 =Sr/Y و مقادیر  wt.%53/4- 93/1 =MgO، ppm 8/13 > Yو ppm 14/1 >Yb هستند و ویژگی‌های مرتبط با آداکیت‌های فقیر از سیلیس را نشان‌داده که در نتیجه ذوب پریدوتیت گوشته­‌ای متاسوماتیسم‌شده، حاصل شده­‌اند. با در‌نظر گرفتن زمان و مکان تشکیل این سنگ‌ها می‌توان نتیجه گرفت که سنگ­‌های مورد بررسی مرتبط با فرورانش پوسته اقیانوسی اطراف خرد قاره شرق- ایران مرکزی (مثلاً پوسته­‌های اقیانوسی عشین و نائین) هستند.

جزئیات مقاله

کلمات کلیدی

کوارتز مونزودیوریت, تراکی آندزیت, فرورانش, آداکیت, ائوسن, خرد قاره شرق- ایران مرکزی

مراجع
Ahmadian, J., Sarjoughian, F., Lentz, D., Esna-Ashari, A., Murata, M. and Ozawa, H., 2016. Eocene K-rich adakitic rocks in the Central Iran: Implications for evaluating its Cu–Au– Mo metallogenic potential. Ore Geology Reviews, 72(1): 323–342.
Aistov, L., Melnikov, B., Krivyakin, B. and Morozov, L., 1984. Geology of the Khur Area (Central Iran). Geological Survey of Iran, Tehran, Report 20, 132 pp.
Arndt, N.T, 2008. Komatiite. Cambridge University Press, Cambridge, 467 pp.
Calmus, T., Aguillon-Robles, A., Maury, R.C., Bellon, H., Benoit, M., Cotten, J., Bourgois, J. and Michaud, F., 2003. Spatial and temporal evolution of basalts and magnesian andesites (“bajaites”) from Baja California, Mexico: the role of slab melts. Lithos, 66(1): 77–105.
Castillo, P.R., 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 257–268.
Castillo, P.R., 2012. Adakite petrogenesis. Lithos, 134(5): 304–316.
Condie, K.C., 1989. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: identification and significance. Lithos, 23(1-2): 1-18.
Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662–665.
Gill, J.B., 1981. Orogenic andesite and plate tectonics. Springer, Berlin, 390 pp.
Grove, T.L., Baker, M.B., Price, R.C., Parman, S.W., Elkin-Tanton, L.T., Chatterjee, N. and Muntener, O., 2005. Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contributions to Mineralogy and Petrology, 148(5): 542–565.
Hofmann, A.W., Jochum, K.P., Seufert, M. and White, W.M., 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2): 33–45.
Irvine, T. and Baragar, W., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548.
Lan, T.G., Fan, H.R., Santosh, M., Hu, F.F., Yang, K.F., Yang, Y.H. and Liu, Y., 2012. Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton: implication for crust–mantle interaction and post-collisional magmatism. Lithos, 140(2): 183–199.
Le Maitre, R.W., 1989. A classification of igneous rocks and glossary of terms, Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Blackwell, Oxford, 193 pp.
Le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, 254 pp.
Macpherson, C.G., Dreher, S.T. and Thirlwall, M.F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3): 581–593.
Mahmoodabadi, L., 2009. Petrography and petrology Eocene Volcanics from Southwest of Jandaq (Northeast Isfahan). M.Sc. Thesis, University of Isfahan, Isfahan, Iran, 220 pp. (in Persian with English abstract)
Martin, H., 1999. The adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3): 411–429.
Martin, H. and Moyen, J.F., 2002. Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of earth. Geology, 30(4): 319–322.
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D., 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1): 1–24.
McDonough, W.F. and Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120(3–4): 223–253.
Middlemost, E.A., 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77(1): 19–26.
Moyen, J.F., 2009. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos, 112(3): 556–574.
Nazari, G.H. and Torabi, G., 2017. Petrogenetic processes, crystallization conditions and nature of the Lower- Oligocene calc-alkaline spessartitic lamprophyres from Kal-e-kafi area (East of Anarak, Isfahan province). Journal of Economic Geology, 9(2): 375–395. (in Persian with English abstract)
Nosouhian, N., Torabi, G. and Arai, S., 2016. Late Cretaceous dacitic dykes swarm from Central Iran, a trace for amphibolite melting in a subduction zone. Geotectonics, 50(3): 295–312.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106(3–4): 380-398.
Pearce, J.A., Lippard, S.J. and Roberts, S., 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: B.P. Kokelaar and M.F. Howells (Editors), Marginal Basin Geology: Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins. Geological Society of London Publications, Special Publication, 16, London, pp. 77-94.
Prouteau, G., Scaillet, B., Pichavant, M. and Maury, R.C., 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410(6825): 197–200.
Rajabi, S. and Torabi, G., 2013. Mineralogy and geochemistry of xenoliths in the Eocene volcanic rocks from southwest of Jandaq. Journal of Economic Geology, 5(1): 65–82. (in Persian with English abstract)
Rapp, R.P. and Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891–931.
Reich, M., Parada, M.A., Palacios, C., Dietrich, A., Schultz, F. and Lehmann, B., 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile: metallogenic implications. Mineralium Deposita, 38(7): 876–885.
Rosu, E., Seghedi, I., Downes, H., Alderton, D.H.M., Szakacs, A., Pecskay, Panaiotu, C.E. and Nedelcu, L., 2004. Extension related Miocene calc-alkaline magmatism in the Apuseni Mountains, Romania: Origin of magmas. Schweizerische Mineralogische und Petrographische Mitteilungen, 84(1): 153–172.
Shirdashtzadeh, N., Torabi, G., Meisel, T., Arai, S., Bokhari, S.N.H., Samadi, R. and Gazel, E., 2014. Origin and evolution of metamorphosed mantle peridotites of Darreh Deh (Nain Ophiolite, Central Iran): implications for the Eastern Neo-Tethys evolution. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 273(1): 89–120.
Shirdashtzadeh, N., Torabi, G. and Samadi, R., 2017. Petrography and mineral chemistry of metamorphosed mantle peridotites of Nain Ophiolite (Central Iran). Journal of Economic Geology, 9(1): 57–72. (in Persian with English abstract)
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins. Geological Society of London Publications, Special Publication, 42, London, pp. 313-345.
Tabatabaei Manesh, S.M., Sharifi, M. and Romanko, A., 2010. P-T condition of the Jandagh metapelitic schists, Northeastern Isfahan Province, Iran. Petrology, 18(3): 308–317.
Tang, Y., Li, X., Xie, Y., Liu, L., Lan, T., Meffre, S. and Huang, C., 2017. Geochronology and geochemistry of late Jurassic adakitic intrusions and associated porphyry Mo–Cu deposit in the Tongcun area, east China: Implications for metallogenesis and tectonic setting. Ore Geology Reviews, 80(1): 289–308.
Torabi, G., 2009. Subduction-related Eocene shoshonites from the Cenozoic Urumieh-Dokhtar magmatic arc (Qaleh-Khargooshi area, West of the Yazd province, Iran). Turkish Journal of Earth Sciences, 18(4): 583–613.
Torabi, G., 2010. Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): Evidence of Central–East Iranian microcontinent confining oceanic crust subduction. Island Arc, 19(2): 277–291.
Torabi, G., 2011. Late Permian blueschist from Anarak ophiolite (Central Iran, Isfahan province), a mark of multi-suture closure of the Paleo-Tethys Ocean. Revista Mexicana de Ciencias Geologicas, 28(3): 544–554.
Torabi, G., 2012. Late Permian post‐ophiolitic trondhjemites from Central Iran: a mark of subduction role in growth of Paleozoic continental crust. Island Arc, 21(3): 215–229.
Vernon, R. H., 2004. A practical guide to rock microstructure. Cambridge University Press, Cambridge, 606 pp.
Wang, Q., Wyman, D.A., Xu, J., Wan, Y., Li, C., Zi, F., Jiang, Z., Qiu, H., Chu, Z., Zhao, Z. and Dong, Y., 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155(4): 473–490.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187.
Zhang, J.Q., Li, S.R., Santosh, M., Wang, J.Z. and Li, Q., 2015. Mineral chemistry of high-Mg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains, China: Constraints on mineralization process. Ore Geology Reviews, 64(1): 200–214.
Zhu, A.C., Zhao, Z.D., Pan, G.T., Lee, H.Y., Kang, Z.Q., Liao, Z.L., Wang, L.Q., Li, G.M., Dong, G.C. and Liu, B., 2009. Early Cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt-peridotite interaction? Journal of Asian Earth
ارجاع به مقاله
جمشیدزائیا., & ترابیق. (۱۳۹۷-۱۲-۰۲). پترولوژی استوک کوارتز مونزودیوریت پورفیری و دایک های ائوسن با ماهیت آداکیتی جنوب‌ غرب جندق (شمال‌ شرق استان اصفهان)؛ شاهدی بر فرورانش پوسته اقیانوسی اطراف خرد قاره شرق- ایران مرکزی. زمین‌شناسی اقتصادی, 10(2), 355-379. https://doi.org/10.22067/econg.v10i2.63996
نوع مقاله
علمی- پژوهشی