##plugins.themes.bootstrap3.article.main##

سید جواد مقدسی ابراهیم طالع فاضل عالیه سادات بنی فاطمی

چکیده

کانسارهای فلوریت باقر­آباد و دره­ بادام در جنوب‌شرق محلات (استان مرکزی)، نمونه‌ای از ذخاير اپی‌ژنتیک در ایران محسوب می‌شوند. کاني‌سازی به‌صورت رگه‌هایی با شیب تقریبی قائم و در ارتباط با شکستگی‌های محلی با راستای شرقی- غربی در سنگ ميزبان کربناتی- شيلی با گستره زمانی ژوراسيک ‌زيرين تا ميانی شکل‌گرفته است. ساخت و بافت‌های پرکننده فضای خالی، برشی و حفره‌ای همراه با دگرسانی‌های دما‌پایین سرسیتی، سيليسی و آرژيليک در این ذخایر دیده می‌شوند. طبق شواهد به‌دست آمده، میان‌بارهای سیال بر مبنای فازهای تشکیل‌دهنده، به‌ترتيب فراوانی شامل سه نوع: 1- ميان‌بارهای دو‌‌فازی آبگين غني از مايع (L+V)، 2- ميان‌بارهای تک‌فاز مايع (L) و گاز (V) و 3- میان‌بارهای آبگين- کربنيک حاوی فاز CO2 (L1+L2+V)، در کانی‌های فلوریت، باريت و کلسیت هستند. با استفاده از تقاطع منحنی‌های هم‌چگال در ميان‌بارهای آبگين و آبگين- کربنيک، کانی‌سازی فلوریت در کانسار باقر­آباد در فشار تقریبی 1 تا 2 کیلوبار و دماي 180 تا 260 درجه سانتی‌گراد تشکیل‌شده است. در کانسارهای باقرآباد و دره‌بادام سیالات گرمابی H2O+CO2 بالا‌آمده از سنگ‌ بستر دگرسان‌شده، شرايطی مناسب برای افزايش انحلال‌پذيری فلزات و تشکيل کمپلکس‌های هالیدی (Cl¯ و F¯) فراهم کرده‌اند. شورابه‌های یادشده طی واکنش با سنگ دیواره و کاهش دمای تدریجی سیال ناشی از رقيق‌شدگی با آب‌های جوی، کانی‌سازی رگه‌ای فلوریت در فضای مناسب را ایجاد کرده‌اند.

جزئیات مقاله

کلمات کلیدی

کانسار فلوریت, ميان‌ بار سيال, کانی سازی, باقرآباد, دره‌ بادام, محلات

مراجع
Alavi, M., 1991. Tectonic map of the Middle East, scale 1:5,000,000. Geological Survey of Iran.
Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1–3): 3–23.
Barati, M., Tale Fazel, E., Akbarpour, A., Talaei, B. and Moslehi, M., 2017. Study of genesis in Qahr-Abad fluorite deposit using fluid inclusion, southeast of Saqqez, the Kurdistan province. Journal of Economic Geology, 9(1): 235–248. (in Persian with English abstract)
Barnes, H.L., 1997. Geochemistry of hydrothermal ore deposits. John Wiley & Sons, New York, 972 pp.
Beane, R.E., 1983. The magmatic-meteoric transition. In: C. Davis (Editor), The role of heat in the development of energy and mineral resources in the northern Basin and Range Province. Geothermal Resources Council, California, pp. 245–253.
Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265.
Bodnar, R.J., 1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: J.F.H. Thompson (Editor), Magmas, fluids, and ore deposits. Mineralogical Association of Canada Short Course Series, Ontario, pp. 139–152.
Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D. and Steele-MacInnis, M., 2014. Fluid inclusions in hydrothermal ore deposits. In: H.D. Holland and K.K. Turekian (Editors), Treatise on geochemistry. Elsevier, Oxford, pp. 119–142.
Boiron, M.C., Cathelineau, M. and Richard, A., 2010. Fluid flows and metal deposition near basement/cover unconformity: lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluids, 10(3): 270–292.
Bowers, T.S. and Helgeson, H.C., 1985. FORTRAN programs for generating fluid inclusion isochores and fugacity coefficients for the system H2O–CO2–NaCl at high pressures and temperatures. Computers and Geosciences, 11(2): 203–213.
Brown, P.E., 1989. FLINCOR: a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74(11–12): 1390–1393.
Burruss, R.C., 1981. Analysis of phase equilibria in C–O–H–S fluid inclusions. In: L.S. Hollister and M.L. Crawford (Editors), Fluid inclusions: applications to petrology. Mineralogical Association of Canada Short Course Series, Ontario, pp. 39–74.
Dill, H.G., 2010. The chessboard classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth-Science Reviews, 100(1): 1–420.
Ehya, F., 2012. Variation of mineralizing fluids and fractionation of REE during the emplacement of the vein-type fluorite deposit at Bozijan, Markazi Province, Iran. Journal of Geochemical Exploration, 112(1): 93–106.
Fontes, J.C. and Matray, J.M., 1993. Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chemical Geology, 109(1–4): 149–175.
Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6): 683–693.
Gheshlaghi, A. and Moore, F., 2007. Recognition of Pinavand fluorite mines occurrence based on geothermometry and REE data. Iranian Journal of Crystallography and Mineralogy, 14(2): 325–338. (in Persian with English abstract)
Goldstein, R.H. and Reynolds, T.J., 1994. Systematics of fluid inclusions in diagenetic minerals. Society for Sedimentary Geology, Oklahama, 199 pp.
Hall, D.L., Sternert, S.M. and Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O. Economic Geology, 83(1): 197–202.
Hanna, J.L. and Stein, H.J., 1990. Magmatic and hydrothermal processes in ore bearing systems. In: H.J. Stein and J.L. Hanna (Editors), Ore bearing granite systems; petrogenesis and mineralizing processes. Geological Society of America Special Paper, Boulder, Colorado, pp. 1–10.
Hanor, J.S., 1994. Origin of saline fluids in sedimentary basins. In: J. Parnell (Editor), Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geological Society of London Special Publication, London, pp. 151–174.
Heijlen, W., Muchez, P. and Banks, D.A., 2001. Origin and evolution of high-salinity, Zn-Pb mineralising fluids in the Variscides of Belgium. Mineralium Deposita, 36(2): 165–176.
Machel, H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sedimentary Geology, 140(1): 143–175.
Markl, G., Ferry, J. and Bucher, E.K., 1998. Formation of saline brines and salt in the lower crust by hydration reactions in partially retrogressed granulites from the Lofoten Islands, Norway. American Journal of Science, 298(8): 705–757.
Masoudi, S.M., Ezzati, E. and Rashidnejad Omran, N., 2016. Investigations on methods for assessment of critical and strategic minerals and elements with a special focus on geoeconomics of fluorspar in Iran. Scientific Quarterly Journal, Geosciences, 25(100): 121–130. (in Persian with English abstract)
McRae, M.E., 2015. Fluorspar. In: S.M. Kimball (Editor), Mineral commodity summaries 2015. U.S. Geological Survey, Reston, Virginia, pp. 56–57.
Mehraban, Z., Shafiei Bafti, B. and Shamanian, G.H., 2016. Rare earths in fluorite deposits of Elika Formation (East of Mazandaran Province). Journal of Economic Geology, 8(1): 201–221. (in Persian with English abstract)
Miller, M.M., 2014. Fluorspar. In: S.M. Kimball (Editor), Mineral commodity summaries 2014. U.S. Geological Survey, Reston, Virginia, pp. 56–57.
Moghaddasi, S.J., Tale fazel, E. and Banifatemi, A., 2016. Fluid evolution during mineralization of Atashkuh fluorite-barite (±sulfide) deposit, south of Delijan. Journal of Economic Geology, 8(1): 167–180. (in Persian with English abstract)
Mohajjel, M. and Fergusson, C.L., 2014. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56: 263–287.
Nabiloo, F., Shafiei Bafti, B. and Amini, A., 2017. Diagenetic and post-diagenetic fabrics in the Kamarposht fluorite mine (east of Mazandaran province): Explainaton and genetic interpretation. Journal of Economic Geology, 9(2): 483–507. (in Persian with English abstract)
Pirouzi, M., Ghaderi, M., Rashidnejad-Omran, N. and Rastad, M., 2009. New evidences on mineralization, diagenesis and fluid inclusions at Kamar-Mehdi stratabound fluorite deposit, southwest Tabas. Iranian Journal of Crystallography and Mineralogy, 17(1): 83–94. (in Persian with English abstract)
Rashidnejad-Omran, N., Emami, M.H., Sabzehei, M., Rastad, E., Bellon, H. and Piqué, A., 2002. Lithostratigraphie et histoire paléozoïque à paléocène des complexes métamorphiques de la région de Muteh, zone de Sanandaj-Sirjan (Iran méridional). Comptes Rendus Geoscience, 334(2): 1185–1191.
Ridley, J., 2013. Ore deposit geology. Cambridge University Press, New York, 398 pp.
Roedder, E., 1984. Fluid inclusions. Review in Mineralogy, Mineralogical Society of America, Washington, D.C., 646 pp.
Roedder, E. and Bodnar, R.J., 1980. Geologic pressure determination from fluid inclusion studies. Annual Review of Earth and Planetary Sciences, 8(2): 263–301.
Sánchez, V., Cardellach, E., Corbella, M., Vindel, E., Martín-Crespo, T. and Boyce, A.J., 2010. Variability in fluid sources in the fluorite deposits from Asturias (N Spain): further evidences from REE, radiogenic (Sr, Sm, Nd) and stable (S, C, O) isotope data. Ore Geology Reviews, 37(2): 87–100.
Sanchez, V., Vindel, E., Martin-Crespo, M., Corbella, M., Cardellach, E. and Banks, D.A., 2009. Sources and composition of fluids associated with fluorite deposits of Asturias (N Spain). Geofluids, 9(4): 338–355.
Sheikhol-Eslami, M.R., 2005. Geological map of the Mahallat quadrangle, scale 1:100,000. Geological Survey of Iran.
Sterner, S.M., Hall, D.L. and Bodnar, R.J., 1988. Synthetic fluid inclusions V: solubility relations in the system NaCl-KCl-H2O under vaporsaturated conditions. Geochemica et Cosmochemica Acta, 52(5): 989–1005.
Svensen, H., Jamtveit, B., Yardley, B., Engvik, A.K., Austrheim, H. and Broman, C., 1999. Lead and bromine enrichment in eclogite-facies fluids: extreme fractionation during lower-crustal hydration. Geology, 27(5): 467–470.
Tadayon, M., Nakini, A., Mohajjel, M. and Rachidnejad-Omran, N., 2015. Structural analysis and its role in Mazandaran fluorite mines, case study of Kamarposht and Shesh Rudbar fluorite mines. Journal of Advanced Applied Geology, 5(16): 12–22. (in Persian with English abstract)
Tale Fazel, E., 2014. Rare earth element geochemistry and dolomite composition of the epigenetic Atash Kuh fluorite deposit (south of Delijan). Geochemistry, Islamic Azad University Zarand Branch, 3(3): 213–224. (in Persian with English abstract)
Tale Fazel, E., 2016. The roles of basinal brines and fluid-rock interaction assiociated with unconformity-related Atash Kuh F–Ba±Sulfide deposit, South of Delijan. Kharazmi Journal of Earth Sciences, 2(1): 81–104. (in Persian with English abstract)
Thiele, O., Alavi, M., Assefi, R., Hushmand-zadeh, A., Seyed-Emami, K. and Zahedi, M., 1968a. Geological map of the Golpaygan quadrangle, scale 1:250,000. Geological Survey of Iran.
Thiele, O., Alavi, M., Assefi, R., Hushmand-zadeh, A., Seyed-Emami, K. and Zahedi, M., 1968b. Explanatory text of the Golpaygan quadrangle map, scale 1:250,000. Geological Survey of Iran, Geological quadrangle E7, Tehran, 24 pp.
Vahabzadeh, G., Khakzad, A., Rasa, I. and Mousavi, M.R., 2008. The study of sulfur isotopes of galena and barite in fluorite ore deposits of Savad Kouh region. Journal of Basic Sciences, Islamic Azad University, 18(69): 99–108. (in Persian with English abstract)
Van den Kerkhof, A.M. and Hein, U.F., 2001. Fluid inclusion petrography. Lithos, 55(1–4): 27–47.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229-272.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–
ارجاع به مقاله
مقدسی س. ج., طالع فاضل ا., & بنی فاطمی ع. س. (2019). مطالعه کانی‌ سازی، میان‌ بارهای سیال و شرایط رخداد کانسارهای فلوريت باقر آباد و دره بادام، جنوب‌ شرق محلات. زمین‌شناسی اقتصادی, 10(2), 617-637. https://doi.org/10.22067/econg.v10i2.61971
نوع مقاله
علمی- پژوهشی