##plugins.themes.bootstrap3.article.main##

محسن مباشری فردین موسیوند مجتبی رستمی حصوری

چکیده

کانسار قلعه­ خم نخستین گزارش از وجود ذخایر بوکسیتی در توالی پالئوزوئیک آغازین پهنه سنندج- سیرجان است. این کانسار به‌صورت عدسی­‌های نامنظم در درون مجموعه مرمرهای کلسیتی- دولومیتی متراکم و توده­‌ای کامبرین پایانی جای‌گرفته است. کانسار قلعه­ خم از دو بخش غنی از هماتیت و کرندوم (افق بالا) و بخش حاوی آلومینوسیلیکات­‌های ورق‌ه­ای (افق پایین) تشکیل‌شده است. بر اساس نتایج آنالیز XRD و بررسی‌های میکروسکوپی، حضور کانی­‌هایی نظیر کرندوم، مگنتیت، دیاسپور و کلریتوئید در این کانسار به اثبات رسیده است. این هم‌یافت بیانگر تأثیر رخداد دگرگونی پس از فرایند بوکسیتی‌شدن در این کانسار است، به‌علت دگرگونی اعمال‌شده، کانسنگ بوکسیتی اولیه به نهشته­‌های متابوکسیتی و یا ذخایر اِمری تبدیل‌شده است. نتایج حاصل از آنالیزهای XRF نیز بیانگر آن است که بوکسیت­‌های قلعه­ خم حاوی مقادیر 25 تا 58 درصد Al2O3، 15 تا 34 درصد Fe2O3، 3 تا 15 درصد SiO2 و 2 تا 5 درصد TiO2 هستند. بررسی نمونه­‌های بوکسیتی در نمودار تغییرات  Al2O3 – Fe2O3 – SiO2 نشان‌دهنده آن است که اغلب این نمونه­‌ها در گستره بوکسیت و بوکسیت­‌های آهن­ دار قرار می‌گیرند. بر اساس نتایج پژوهش حاضر، در کامبرین پایانی و در شرایط اقلیمی مناسب، بوکسیت‌های جنوب خاور سیرجان تشکیل‌شده­ و سپس تحت تأثیر دگرگونی و دگرشکلی­‌های ناشی از حرکات کوه‌زایی سیمیرین پیشین به متابوکسیت­‌های غنی از کرندوم تبدیل شده‌اند.

جزئیات مقاله

کلمات کلیدی

متابوکسیت, کرندوم, پالئوزوئیک, قلعه خم, سنندج- سیرجان

مراجع
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B. and Wortel, R., 2011. Zagros orogeny: a subduction – dominated process. Geological Magazine, 148(5–6): 692–725.
Alavi, M., 1994. Tectonic of the zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3–4): 211–238.
Aleva, G.J.J., 1981. Essential differences between the bauxite deposits along the southern and northern edges of the Guiana Shield, South America. Economic Geology. 76(5): 1142–1152.
Aleva, G.J.J., 1994. Laterites: concepts, geology, morphology and chemistry. International Soil Reference and Information Centre (ISRIC), Wageningen, Netherlands, 169 pp.
Aghanabati, A., 2010. Geology of Iran. Geological Survey of Iran, Tehran, 586 pp.
Bárdossy, G., 1982. Karst bauxites. Elsevier, Amsterdam, 441 pp.
Bárdossy, G. and Aleva, G.J.J., 1990. Lateritic bauxite. Elsevier, Amsterdam, 624 pp.
Berberian, M. and King, G.C., 1981. Towards a palaeogeography and tectonics evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265.
Bogatyrev, B.A., Zhukov, V.V. and Tsekhovsky, Y.G., 2009. Formation conditions and regularities of the distribution of large and superlarge bauxite deposits. Lithology and Mineral Resources, 44(2): 135–151.
Boulange, B., Bouzat, G. and Pouliquen, M., 1996. Mineralogical and geochemical characteristicsof two bauxitic profiles, Fria, Guinea Republic. Mineralium Deposita, 31(5): 432–438.
Calagari, A.A. abd Abedini, A., 2007. Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. Journal of Geochemical Exploration, 94(1): 1–18.
Cocks, L.R.M. and Torsvik, T.H., 2005. Baltica from the late Precambrian to mid- Palaeozoic times: the gain and loss of a terrane's identity. Earth–Science Reviews, 72(1-2): 39–66.
Dill, H.G., 2010. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth–Science Reviews, 100(1): 1–420.
Dunkl, I., 1992. Origin of Eocene-covered karst bauxites of the Transdanubian Central Range (Hungary); evidence for early Eocene volcanism. European Journal of Mineralogy, 4(3): 581–595.
Edwards, R. and Atkinson, K. (translated by Moor, F. and Nekouvaght–Tak, M.A.), 1998. Ore Deposit Geology. Shiraz University Press, Shiraz, 722 pp.
Emamali-pour, A. and Mirmohammadi, M.S., 2011. Mineralogy and geochemistry of corundum-bearing metabauxite- laterite from Heydarabad, SE Urmia, NW Iran. Iranian Journal of Crystallography and Mineralogy, 19(1): 59–72. (in Persian with English abstract)
Feenstra, A., Sämann, S. and Wunder, B., 2005. An experimental study of Fe–Al solubility in the system corundum-hematite up to 40 kbar and 1300°C. Journal of Petrology, 46(9): 1881–1892.
Feenstra, A. and Wunder, B., 2002. Dehydration of diasporite to corundite in nature and experiment. Geology, 30(2): 119–122.
Ghavidel-syooki, M. and Vecoli, M., 2008. Palynostratigraphy of Middle Cambrian to lowermost Ordovician stratal sequences in the High Zagros Mountains, southern Iran: Regional stratigraphic implications, and palaeobiogeographic significance. Review of Palaeobotany and Palynology, 150(1–4): 97–114.
Golani, P.R., 1989. Sillimanite-corundum deposits of Sonapahar, Meghalaya, India: a metamorphosed Precambrian Paleosol. Precambrian Research, 43(3): 175–189.
Grubb, P.L.C., 1973. High-level and low-level bauxitisation: a criterion for classification. Mineral Science Engineering, 5(2): 219–231.
Gu, J., Huang, Z., Fan, H., Jin, Z., Yan, Z. and Zhang, J., 2013. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng'an–Daozhen area, Northern Guizhou Province China. Journal of Geochemical Exploration, 130(6): 44–59.
Guilbert, J.M. and Park, C.F. (translated by Alirezai, S.), 1986. The geology of ore deposits. Amirkabir Press, Tehran, 983 pp.
Hanilçi, J., 2013. Geological and geochemical evolution of the Bolkardaği bauxite deposits, Karaman, Turkey: Transformation from shale to bauxite. Journal of Geochemical Exploration, 133(3):118–137.
Hutchison, C.S., 1983. Economic deposits and their tectonic setting. Macmillan Press, London, 365 pp.
Karadage, M., Kupeli, S., Arik, F., Ayhan, A., Zedef, V. and Doyen, A., 2009. Rare earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya-southern Turkey). Chemie der Erde Geochemistry, 69(2): 143–159.
Kretz, R., 1983. Symbols of rock-forming minerals. American Mineralogist, 68(2): 277–279.
Mehdipourghazi, J. and Moazzen, M., 2015. Geodynamic evolution of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran. Turkish Journal of Earth Sciences, 24(5): 513–528.
Moczydlowska, M., 1997. Proterozoic and Cambrian successions in Upper Silesia: An Avalonian terrane in southern Poland. Geological Magazine, 134(5): 679– 689.
Mohajjel, M., 1997. Structure and Tectonic Evolution of Palaeozic- Mesozoic rocks, Sanandaj-Sirjan Zone, Western Iran. Ph.D. Thesis, The University of Wollongong, New South Wales, Australia, 224 pp.
Mongelli, G. and Acquafredda, P., 1999. Ferruginous concretions in a Late Cretaceous karst bauxite: composition and conditions of formation. Chemical Geology, 158(3–4): 315–320.
Mutakyahwa, M.K.D., Ikingura, J.R. and Mruma, A.H., 2003. Geology and geochemistry of bauxite deposits in Lushoto District, Usambara Mountains, Tanzania. Journal of African Earth Sciences, 36(4): 357–369.
Nutman, A.P., Mohajjel, M., Bennett, V.C. and Fergusson, C.L., 2013. Gondwanan Eoarchean–Neoproterozoic ancient crustal material in Iran and Turkey: zircon U–Pb–Hf isotopic evidence. Canadian Journal of Earth Sciences, 51(3): 272–285.
Özlü, N., 1983. Trace-element content of ‘Karst Bauxites’ and their parent rocks in the Mediterranean Belt. Mineralium Deposita, 18(3): 469–476.
Poosti, M., Khakzad, A. and Fadaeian, M., 2011. Bauxite and deposits in Iran. University of Hormozgan, Hormozgan, 229 pp.
Ramezani, J. and Tucker, R.D., 2003. The Saghand region, central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(7): 622–665.
Rouzbeh-Kargar, S., 1997. Chemical and mineralogical composition of alamut bauxite deposit in Qazvin area and comparing it with known bauxites in Iran. 8th International Congress of The International Committee for Study of Bauxite, Alumina and Aluminium, Milan, Italy.
Sabzehei, M., Nazem-zadeh, M., Roshan-Ravan, J., Azizan, H. and Navazi, M., 1994. Geological map of Khabr, scale 1:100,000. Geological Survey of Iran.
Sabzehei, M., Nazem-zadeh, M., Roshan-Ravan, J., Azizan, H. and Navazi, M., 1996. Geological map of Baghat, scale 1:100,000. Geological Survey of Iran.
Schellmann, A., 1982. Considerations on the definition and classification of Laterites. Proceeding of International Union of Geological Sciences /United Nations Education, Scientific and Cultural Organization, Seminar on Laterisation Processes, Paris, French.
Scotese, C.R. and McKerrow, W.S., 1991. Ordovician plate tectonic reconstructions. In: C.R. Barnes and S.H. Williams (Editors), Advances in Ordovician geology. Geological Survey of Canada, Toronto, pp. 271–282.
Sheikholeslami, M.R., 2015. Tectonostratigraphic units of southeastern part of the Sanandaj- Sirjan Zone. Geosciences, 24(95): 243-252. (in Persian with English abstract)
Taylor, G. and Eggleton R.A., 2008. Genesis of pisoliths and of the Weipa Bauxite deposit, northen Australia. Australian Journal of Earth Sciences, 55(1): 87–103.
Temur, S., 2006. A geochemical approach to parent rocks of the Maşatdaği diasporic bauxite, Alanya, Antalya, southern Turkey. Geochemistry International, 44(9): 941–952.
Valton, I., 1973. Pre-bauxite red sediments and the underlying sediments of suriname and Guyana. Geologie en Mijnbouw, 52(2): 317–334.
Williams, K.E., 1997. Early Paleozoic paleogeography of Laurentia and western Gondwana: evidence from tectonic subsidence analysis. Geology, 25(8): 747–750.
Yu, W., Wang, R., Zhang, Q., Du, Y., Chenb, Y. and Liang, Y., 2014. Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi, South China: From the original Permian orebody to a Quarternary Salento-type deposit. Journal of Geochemical Exploration, 146(8): 75–88.
Zarasvandi, A., Charchi, A., Carranza, E.J.M. and Alizadeh, B., 2008. Karst bauxite deposits in the Zagros Mountain Belt, Iran. Ore Geology Reviews, 34(4): 521–532.
Zarasvandi, A., Froghiniya, A., Pourkaseb, H., Charchi, A. and Salamabellahi, S., 2013. Micromorphological and formation process of Pisolitic bauxite deposits of Dehdasht area. Journal of Economic Geology, 5(1): 137–152. (in Persian with English abstract)
ارجاع به مقاله
مباشریم., موسیوندف., & رستمی حصوریم. (۱۳۹۷-۱۲-۰۲). تحولات زمین شناختی و کانی شناختی متابوکسیت غنی از کرندوم پالئوزوئیک زیرین (کامبرین پایانی) در جنوب خاوری سیرجان، پهنه سنندج- سیرجان. زمین‌شناسی اقتصادی, 10(2), 381-402. https://doi.org/10.22067/econg.v10i2.60677
نوع مقاله
علمی- پژوهشی