زمین‌ شیمی زیست‌ محیطی عناصر بالقوه سمّی در باطله‌ های فراوری معدن سرب و روی آهنگران، استان همدان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه زمین‌ شناسی زیست‌ محیطی و آب‌ شناسی، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار، گروه زمین‌ شناسی زیست محیطی و آب شناسی، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 استادیار، گروه زمین‌ شناسی زیست محیطی و آب شناسی، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

هدف از این پژوهش، بررسی زمین‌شیمی زیست­ محیطی عناصر بالقوّه سمّی در باطله ­های فراوری معدن سرب و روی آهنگران، واقع در 95 کیلومتری جنوب‌شرق همدان است. به این منظور، مؤلفه‌های فیزیکی- شیمیایی، فازهای کانیایی و غلظت عناصر بالقوه سمّی در 14 نمونه بررسی شد. pH نمونه ­های باطله در محدوده بین 7‏‏/7 تا 4‏‏/9، کربنات بین 5/50 تا 5/64 درصد و ظرفیت تبادل کاتیونی بین 3‏‏/27 تا 1‏‏/35 میلی ­اکی ­والان بر 100 گرم متغیر است. کانی رسی غالب در نمونه­ های باطله مونتموریلونیت، و کانی ­های کوارتز و سیدریت فراوان ­ترین فازهای کانیایی هستند. بر اساس داده ­های غلظت کل عناصر بالقوه سمّی و محاسبه­ ضرایب زیست ­محیطی، نمونه ­های باطله نسبت به عناصر سرب، آنتیموان، روی، کادمیم، آرسنیک، منگنز و نقره غنی ­شدگی نشان می­ دهند و دارای خطر بوم‌شناختی بسیار زیادی هستند. ارزیابی خطر سلامت برای جمعیت­ های انسانی پیرامون معدن نشان می ­دهد که مقدار ضریب خطر عناصر مختلف در کودکان بیشتر از بزرگسالان است. بیشترین خطر غیرسرطان‌زایی برای مسیر بلع، استنشاق، و تماس پوستی به ترتیب مربوط به عناصر آرسنیک، منگنز و کادمیم است. بلع عناصر آرسنیک، کادمیم و کروم برای کودکان و بلع کادمیم برای بزرگسالان با خطر سرطان‌زایی همراه است. بر اساس نتایج به دست آمده، باطله ­های فراوری معدن آهنگران پتانسیل آلوده‌کردن منابع آب زیرزمینی و خاک کشاورزی پیرامون معدن را داشته و بنابراین اعمال تمهیدات زیست­ محیطی مناسب برای دفع مناسب باطله ­ها یا پاک‌سازی آنها ضروری است. 

کلیدواژه‌ها


Abrahim, G.M.S. and Parker R.J., 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental monitoring and assessment, 136(1–3): 227–238. https://soi.org/10.1007/s10661-007-9678-2
Akkajit, P. and Tongcumpou, Ch., 2010. Fraction of metals in cadmium contaminated soil: Relation and effect on bioavailable cadmium. Geoderma, 156(3–4): 126–132.  https://doi.org/10.1016/j.geoderma.2010.02.007
Anazawa, K., Kaida, Y., Shinomura, Y., Tomiyasu, T. and Sakamoto, H., 2004. Heavy Metal Distribution in River Waters and sediments around a Fire Fly Village. Shikoku, Japan: Application of Multivariate Analysis. Analytical Science, 20‌(1): 79–84. https://doi.org/10.2116/analsci.20.79
 Azizi, M., Faz, A., Zornoza, R., Martínez-Martínez, S. Shahrokh, V. and Acosta, J.A., 2023. Environmental pollution and depth distribution of metal(loid)s and rare earth elements in mine tailing. Journal of Environmental Chemical Engineering, 10(3): 107526. Retrieved February 13, 2024 from https://www.sciencedirect.com/science/article/abs/pii/S2213343722003992
Banerjee, S., Ghosh, S., Jha, S., Kumar, S., Mondal, G., Sarkar, D., Datta, R., Mukherjee, A. and Bhattacharyya, P., 2023. Assessing pollution and health risks from chromite mine tailings contaminated soils in India by employing synergistic statistical approaches. Science of the Total Environment, 880: 163228. https://doi.org/10.1016/j.scitotenv.2023.163228
Brady, N.C. and Weil, R.R., 2008. The Nature and Properties of Soils. Pearson Prentice Hall, 965 pp. Retrieved February 13, 2024 from https://books.google.com/books/about/The_Nature_and_Properties_of_Soils.html?id=76B4PwAACAAJ
Buch, A.C., Niemeyer, J.C., Marques, E.D. and Silva-Filho, E.V., 2021. Ecological risk assessment of trace metals in soils affected by mine tailings. Journal of Hazardous Materials, 403: 123852. https://doi.org/10.1016/j.jhazmat.2020.123852
Davoodifard, M., Forghani Tehran, G., Ghorbani, H. and Ghasemi, H., 2019. Distribution of Potentially Toxic Elements in the Tailings, Mine and Agricultural Soils around the Irankuh Pb-Zn Mine, SW Esfahan. Journal of Economic Geology, 10(2): 537–559. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V10I2.62158
Deer, W.A., Howie, R.A. and Zussman, J., 2013. An introduction to the rock-forming minerals (third edition).  London (Longman Scientific & Technical). 506 pp. Retrieved February 13, 2024 from https://www.geokniga.org/bookfiles/geokniga-anintroductiontotherock-formingminerals.pdf.
Dehghani, A., Ostad Rahimi, M. and Hemmati, K., 2014. Investigating the effect of parameters on the flotation rate of Ahangaran Pb ore. The fifth Mining Engineering conference, Tehran, Retrieved February 13, 2024 from https://civilica.com/doc/316605
Eby, G.N., 2004. Principles of Environmental Geochemistry. THOMSON, University of Massachusetts, Lowell, 511 pp. Retrieved February 13, 2024 from https://faculty.uml.edu/nelson_eby/Textbook/Textbook.htm
Forghani, G., Mokhtari, A.R., Kazemi, Gh.A. and Davoodi Fard, M., 2015. Total concentration, speciation and mobility of potentially toxic elements in soils around a mining area in central Iran. Geochemistry, 75: 323–334. Retrieved February 13, 2024 from https://www.sciencedirect.com/science/article/abs/pii/S000928191500029X
Fytianos, K., Katsianis, G., Triantafyllou, P. and Zachariadis, G., 2001. Accumulation of heavy metals in vegetables grown in an industrial area in relation to soil. Bulletin of Environmental Contamination and Toxicology, 67: 423–430. https://doi.org/10.1007/s00128-001-0141-8
Galjak, J., Dokić, J., Milentijević, G., Dervišević, I. and Jović, S., 2020. Characterization of the tailing waste deposit “Gornje Polje”. Optik, 215: 164684. Retrieved February 13, 2024 from https://www.sciencedirect.com/science/article/abs/pii/S0030402620305180
Ge, Y., Murray, P. and Hendershot, W.H., 2000. Trace metal speciation and bioavailability in urban soils. Environmental Pollution, 107‌(1): 137–144. https://doi.org/10.1016/S0269-7491(99)00119-0
Ghosh, S., Banerjee, S., Prajapati, J., Mandal, J., Mukherjee, A. and Bhattacharyya, P., 2023. Pollution and health risk assessment of mine tailings contaminated soils in India from toxic elements with statistical approaches. Chemosphere, 324: 138267. Retrieved February 13, 2024 from https://www.sciencedirect.com/science/article/abs/pii/S0045653523005349
Håkanson, L., 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14: 995–1001. Retrieved February 13, 2024 from https://www.sciencedirect.com/science/article/abs/pii/0043135480901438
Han, J., Kim, M. and Ro, H.M., 2020. Factors modifying the structural configuration of oxyanions and organic acids adsorbed on iron (hydr)oxides in soils. A review. Environmental Chemistry Letters, 18: 631–662. Retrieved February 13, 2024 from https://link.springer.com/article/10.1007/s10311-020-00964-4
He, Z.L., Alva, A.K., Calvert, D.V. and Banks, D.J., 2000. Effects of leaching solution properties and volume on transport of metals and cations from a riviera fine sand. Journal of Eenvironmental Science and Health (A), 35: 981–998. https://doi.org/10.1080/10934520009377016
IARC (International Agency for Research on Cancer), World Health Organization, 2016. Biennial Report. Retrieved February 13, 2024 from https://monographs.iarc.who.int/agents-classified-by-the-iarc/
Jaiswal, P.C., 2004. Soil, plant and water analysis. KALYANI Publishers, Delhi, India, 441 pp. Retrieved February 13, 2024 from https://www.amazon.com/Soil-Plant-and-Water-Analysis/dp/9327210174
Jeffery, P.G. and Hutchinson, D., 1981. Chemical Methods of Rock Analysis, (3rd edition). Butterworth-Heinemann, Pergamon, Oxford, 379 pp. Retrieved February 13, 2024 from https://shop.elsevier.com/books/chemical-methods-of-rock-analysis/hutchison/978-0-08-023806-7
Kolivand, R., Zohreh-vandi, H., Torkaman, M. and Nasiri, B., 2021. The Report of 1399-1400 Crop Year. Meteorological Organization of Hamedan Province, Hamedan, 22 pp. Retrieved February 13, 2024 from http://sinamet.ir/data/prsinamet/pr/1400/pdf/gozaresh%20sale%20zeraei-malayer%201399-1400.pdf
Li, X., Zhou, T., Li, Zh., Wang, W., Zhou, J., Hu, P., Luo, Y., Christie, P. and W. L., 2022. Legacy of contamination with metal(loid)s and their potential mobilization in soils at a carbonate-hosted lead-zinc mine area. Chemosphere, 308: 136589. Retrieved February 13, 2024 from https://www.sciencedirect.com/science/article/abs/pii/S004565352203082X
Lottermoser, B.G., 2010. Mine Wastes: Characterization, treatment and environmental impacts, (3rd Edition). Springer Heidelberg Dordrecht London New York. 410 pp. Retrieved February 13, 2024 from https://www.usb.ac.ir/FileStaff/1623_2019-6-10-1-6-29.pdf
Mason, B. and Moore, C.B., 1982. Principles of Geochemistry, (2rd Edition). John Wiley and Sons Ltd. 344 pp. Retrieved February 13, 2024 from https://www.geokniga.org/bookfiles/geokniga-principles-geochemistry.pdf
Mehrabi, B., Mehrabani, Sh., Rafiei, B. and Yaghoubi, B., 2015. Assessment of metal contamination in groundwater and soils in the Ahangaran mining district, west of Iran. Environmental Monitoring and Assessment, 187: 727. https://doi.org/10.1007/s10661-015-4864-0
Metson, A.J., 1956. Methods of chemical analysis for soil survey samples. New Zealand Soil Bureau. New Zealand Department of Scientific and Industrial Research Soil Bureau, Bulletin 12, 208 pp. Retrieved February 13, 2024 from https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj1957.00021962004900040024x
Mirkhani, R., Shabanpour, M. and Saadat, S., 2005. Using particle-size distribution and organic carbon percentage to predict the cation exchange capacity of soils of Lorestan province. Iranian Journal of Soil Research, 19(2): 231–237.  Retrieved February 13, 2024 from https://srjournal.areeo.ac.ir/article_127454.html?lang=en
Müller, G., 1969. Index of geoaccumulation in the sediments of the Rhine River. Geojournal, 2: 108-118. Retrieved February 13, 2024 from https://www.researchgate.net/publication/303060644_Index_of_geoaccumulation_in_sediments_of_the_Rhine_River
Munanku, T., Banda, K., Nyimbili, P.H., Mhlongo, S.E. and Masinja, J., 2023. Development of a multi-criteria decision analysis tool for the assessment of the potential pollution risk of tailings dumps to the environment – An approach validated using selected Zambian Mine tailings. Journal of African Earth Sciences, 200: 104880. Retrieved February 13, 2024 from https://doi.org/10.1016/j.jafrearsci.2023.104880
Nguyen, H.L., Leermakers, M., Elskens, M, De Ridder, F., Doan, T.H. and Baeyens, W., 2005. Correlations, Partitioning and Bioaccumulation of heavy metals Between Different Components of Lake Balaton. Science of the total Environment 341 (1–3): 211–226. https://doi.org/10.1016/j.scitotenv.2004.09.019
Rafiei, B., Khodaei, A.S., Khodabakhsh, S., Hashemi, M. and Bakhtiari Nejad, M., 2010. Contamination Assessment of Lead, Zinc, Copper, Cadmium, Arsenic and Antimony in Ahangaran Mine Soils, Malayer, West of Iran. Soil and Sediment Contamination: An International Journal, 19, 574–586. https://doi.org/10.1080/15320383.2010.499921
Renock, D. and Becker, U., 2011. A first principles study of coupled substitution in galena. Ore Geology Reviews, 42(1): 71–83. https://doi.org/10.1016/j.oregeorev.2011.04.001
Ruppen, D., Runnalls, J., Tshimanga, R.M., Wehrlia, B. and Odermatt, D., 2023. Optical remote sensing of large-scale water pollution in Angola and DR Congo caused by the Catoca mine tailings spill. International Journal of Applied Earth Observation and Geoinformation, 118: 103237. Retrieved February 13, 2024 from https://www.sciencedirect.com/science/article/pii/S1569843223000596
Sanz, J., Tomasa, O., Jimenez-Franco, A. and Sidki-Rius, N., 2022. Cadmium (Cd) [Z = 48]. In: Elements and Mineral Resources. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. 43-45. https://doi.org/10.1007/978-3-030-85889-6_10
Shamsipoor, S.H., 2018. Mineralogy and Geochemistry of Mine Tailings: A Case Study of Bafgh Kushk Pb-Zn Mine, Yazd Province. M.Sc. Thesis, Shahrood University of Technology, Shahrood, Iran, 141 pp. Retrieved February 13, 2024 from https://shahroodut.ac.ir/fa/thesis/files/somefiles/sf_QE418.pdf
Statistical Centre of Iran, 2016. Report of Statistical results of Mines in use in the country. 307 pp. Retrieved February 13, 2024 from https://www.amar.org.ir/Portals/0/News/1396/madan95.pdf
Tessier, A., Campbell, P.G.C. and Bisson, M., 1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51‌(7): 844–851. Retrieved February 13, 2024 from https://www.academia.edu/3438391/Sequential_extraction_procedure_for_the_speciation_of_particulate_trace_metals
USEPA, 1989. Risk assessment guidance for superfund. Volume I. Human health evaluation manual (Part A). Office of Emergency and Remedial Response. U.S, Environmental Protection Agency. Washington, D.C. 20450. EPA/540/1-89/002. 291 pp. Retrieved February 13, 2024 from https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf
USEPA, 1990. Test Methods for Evaluating Solid Waste, Method 9081A. EPA, Washington, D.C. Retrieved February 13, 2024 from https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=20014266.TXT
USEPA, 1998. Test Methods for Evaluating Solid Waste, Method 9045D. EPA, Washington, D.C. Retrieved February 13, 2024 from https://www.epa.gov/sites/default/files/2015-12/documents/9045d.pdf
USEPA, 2000. Risk-based concentration table. Office of Health and Environmental Assessment, Washington Retrieved February 13, 2024 from DC, USA. https://archive.epa.gov/region9/superfund/web/html/index-23.html
Uugwanga, M.N. and Kgabi, N.A., 2020. Assessment of metals pollution in sediments and tailings of Klein Auband Oamites mine sites, Namibia. Environmental Advances, 2:100006. https://doi.org/10.1016/j.envadv.2020.100006
Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P. and Litheraty, p., 2003. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere, 51(8): 633–642. https://doi.org/10.1016/S0045-6535(03)00217-0
Yan, L., Franco, A.M. and Elio, P., 2021. Health risk assessment via ingestion and inhalation of soil PTE of an urban area. Chemosphere, 281: 130964. https://doi.org/10.1016/j.chemosphere.2021.130964
Yan, T., Zhao, W., Yu, X., Li, H., Gao, Zh., Ding, M. and Yue, J., 2022. Evaluating heavy metal pollution and potential risk of soil around a coal mining region of Tai’an City, China. Alexandria Engineering Journal 61(3): 2156–2165. https://doi.org/10.1016/j.aej.2021.08.013
Ye, Z.H., Shu, W.S., Zhang, Z.Q., Lan, C.Y and Wong, M.H., 2002. Evaluation of major constraints to revegetation of lead‏‏/zinc mine tailings using bioassay techniques. Chemosphere, 47(10): 1103–1111. https://doi.org/10.1016/S0045-6535(02)00054-1
Zhang, Ch., Wu, L., Luo, Y., Zhang, H. and Christie, P., 2008. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physiochemical properties. Environmental Pollution, 151(3): 470–476. https://doi.org/10.1016/j.envpol.2007.04.017
Zhang, H., Zhang, F., Song, J., Leong Tan, M., Kung, H. and Johnson, V.C., 2021. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environmental Research, 202: 111702. https://doi.org/10.1016/j.envres.2021.111702
Zhang, L., Yang, Q., Wang, H., Gu, Q., Zhang, Y., 2022. Genetic interpretation and health risk assessment of arsenic in Hetao Plain of inner Mongolia, China. Environmental Research, 208: 112680. https://doi.org/10.1016/j.envres.2022.112680
 
 
CAPTCHA Image