شواهد کانی سازی مس پورفیری در منطقه چشمه خوری، شمال غرب بیرجند: زمین‌ شناسی، دگرسانی، کانی سازی، ژئوشیمی، سیالات درگیر و ایزوتوپ پایدار

نوع مقاله : علمی- پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

منطقه چشمه­‌خوری بخشی از پهنه آتشفشانی- نفوذی در غرب بلوک لوت و شمال‌­غربی­ شهر بیرجند است. این محدوده­ شامل برون‌زدهایی از سنگ­‌های آتشفشانی و آذرآواری ائوسن بوده که واحد­های نیمه­‌عمیق با ترکیب گابرودیوریتی تا گرانودیوریتی در آنها نفوذ کرده‌اند. دگرسانی‌­های اصلی شامل پروپلیتیک، آرژیلیک، کوارتز- سریسیت- پیریت و سیلیسی است. کانی‌­سازی اغلب به‌صورت رگچه‌­­ای و پراکنده در زون­‌های دگرسانی کوارتز- سریسیت‌- پیریت، آرژیلیک- سیلیسی و پروپلیتیک و پراکنده در زون دگرسانی آرژیلیک دیده می­‌شود. تنها کانی­ سولفیدی اولیه شناسایی‌شده در منطقه پیریت است. به‌دلیل تأثیر زیاد فرایندهای هوازدگی بر کانی­‌سازی اولیه، کانی‌سازی ثانویه سولفیدی و اکسیدی (کالکوسیت، کوولیت، مالاکیت، هماتیت، گوتیت و ژاروسیت) گسترش‌یافته­ و در‌نهایت کلاهک سنگی ایجاد‌کرده است. بیشترین بی‌­هنجاری­‌های مس (654 گرم در تن) و سرب (1622 گرم در تن) منطبق بر دگرسانی کوارتز- سریسیت‌- پیریت است. بررسی سیالات درگیر اولیه در بلورهای کوارتز همراه با کانی‌سازی در زون کوارتز- سریسیت‌- پیریت، آرژیلیک- سیلیسی و کلسیت همراه با کانی‌­سازی در زون پروپلیتیک، متوسط دمای همگن‌‌شدن به‌ترتیب 321، 305 و 263 درجه سانتی‌گراد را نشان می­‌دهند. بر پایه ذوب آخرین قطعه یخ سیال نیز متوسط شوری این سه زون به‌ترتیب 12، 6/11 و 9/7 درصد وزنی نمک طعام است. کاهش دمای همگن‌شدن و شوری از دگرسانی کوارتز- سریسیت- پیریت به‌سمت پروپلیتیک می­‌تواند به‌دلیل تغییرات فیزیکوشیمیایی در سیال مانند سرد‌شدن و اختلاط با آب­‌های جوی توجیه‌شود. با توجه به شواهد بافتی جوشش نیز در طی تحول و تکامل سیال مؤثر بوده است. مقدار δ34S پیریت بین 35/2 تا 46/2 ‰ و مقدار δ34 سیال همزاد با کانی پیریت بین 25/1 ‰ و 36/1 ‰ بوده که خاستگاه ماگمایی را برای گوگرد نشان می­‌دهد. گسترش زون­‌های دگرسانی پروپلیتیک و آرژیلیک در سطح، محدود‌بودن زون کوارتز- سریسیت- پیریت، نبود دگرسانی پتاسیک، وجود کلاهک سنگی، بی­‌هنجاری­‌های ژئوشیمیایی، محدوده دما و شوری سیالات درگیر می­‌تواند نشانگر بخش بالایی یک سیستم مس پورفیری باشد.

کلیدواژه‌ها


Abraitis, P.K., Pattrick, R.A.D. and Vaughan, D.J., 2004. Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal Mineral Processing, 74(1): 41–59.
Agangi, A., Hofmann, A. and Wohlgemuth Ueberwasser, C.C., 2013. Pyrite zoning as a record of mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa. Economic Geology, 108(6): 1243–1272.
Aghanabati, S.A., 2004. Geology of Iran. Geological Survey of Iran, Tehran. 586 pp. (in Persian)
Andrew, G.S.D., Cook, D. and Gemmel, J.B., 2008. Hydrothermal Breccias and Veins at the Kelian Gold Mine, Kalimantan, Indonesia: Genesis of a Large Epithermal Gold Deposit. Economic Geology, 103(4): 717–757.
Arjmandzadeh, R. and Santos, J.F., 2014. Sr–Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu–Mo porphyry mineralizing intrusives from Lut Block, eastern Iran. International Journal of Earth Sciences (Geologische Rundschau), 103(1): 123–140.
Barton Jr, P.B., 1969. Thermochemical study of the system Fe-As-S. Geochimica et Cosmochimica Acta, 33(7): 841–857.
Baumgartner, R. and Fontbote, L., 2008. Mineral Zoning and Geochemistry of Epithermal Polymetallic Zn-Pb-Ag-Cu-Bi Mineralization at Cerro de Pasco, Peru. Economic Geology, 103(3): 493–537.
Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683–684.
Brown, P.E. and Lamb, W.M., 1989. P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies. Geochimica et Cosmochimica Acta, 53(6): 1209–1221.
Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 21(7): 767–780.
Chaussidon, M. and Lorand, J.P., 1990. Sulphur isotope composition of oro-genic spinel lherzolite massifs from Ariege (north-eastern Pyrenees, France): an ion microprobe study. Geochimica et Cosmochimica Acta, 54(10): 2835–2846.
Chen, Y.J., Piranjno, F., Li, N., Guo, D.Sh. and Lai, Y., 2009. Isotope systematica snd fluid inclusion studies of the Qiyugou breccia pipe- hosted gold deposit, Qinling Orogen, Henan province, China: Implication for ore genesis. Ore Geology Reviews, 35(2): 245–261.
Cook, N.J., Ciobanu, C.L. and Mao, J., 2009. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits. North China Craton (Hebei Province, China). Chemical Geology, 264(1): 101–121.
Davis, D.W., Lowenstein, T.K. and Spencer, R.J., 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O and NaCl–CaCl2–H2O. Geochimica et Cosmochimica Acta, 54(3): 591–601.
Etemadi, A., Karimpour, M.H. and Malekzadeh Shafaroudi, A., 2018. Geology, petrography, alteration, mineralization and petrogenesis of intrusive bodies in the Hamech prospect area, Southwest of Birjand. Journal of Economic Geology, 10(1): 113–137. (in Persian with English abstract)
Fournier, R.O., 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 94(8): 1193–1212.
Franchini, M., McFarlane, C., Maydagan, L., Reich, M., Lentz, D.R., Meinert, L. and Bouhier, V., 2015. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geology Reviews, 66(1): 366–387.
Gokce, A., 2000. Ore deposits. Cumhuriyet University Publication, Sivas, 336 pp.
Goldstein, R.H., 2003. Petrographic Analysis of Fluid Inclusions. In: I. Samson, A. Anderson and D. Marshall (Editors), Fluid inclusions: Analysis and interpretation. Mineralogical Association of Canada, Quebec, pp. 9–53.
Hedenquist, J.W., 1987. Mineralization associated with volcanic related hydrothermal systems in the Circum-Pacific basin. In: M.K. Horn (Editor), Transactions of the Fourth Circum-Pacific. Energy and Mineral Resources Conference. American Associated of Petroleum Geologists, Tulsa, pp. 513–524.
Hedenquist, J.W., Arribas, A. and Reynolds, T.J., 1998. Evolution of an intrusion centered hydrothermal system: Far Southeast–Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology 93(4): 373–404.
Hoefs, J., 2004. Stable isotope geochemistry. Spinger-Verlog, Berlin, 244 pp.
Javidi Moghaddam, M., Karimpour, M.H., Ebrahimi Nasrabadi, K., Malekzadeh Shafaroudi, A. and Heidariane Shahri, M. R. 2015. Petrology and geochemistry of intrusive and sub volcanic rocks of Cheshmeh Khuri, northwest of Birjand. 7th Symposium of Iranian Society of Economic Geology, University of Damghan, Damghan, Iran.
Javidi Moghaddam, M., Karimpour, M.H., Ebrahimi Nasrabadi, K., Malekzadeh Shafaroudi, A. and Heidariane Shahri, M.R. 2016. Petrology and geochemistry of volcanic rocks of Cheshmeh Khuri and Shekasteh Sabz areas, Khur, northwest of Birjand. Petrology, 7(27): 125–146. (in Persian with English abstract)
Javidi Moghaddam, M., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Heidariane Shahri, M.R. 2013. Satellite data processing, alteration, mineralization and geochemistry of Mehrkhash area prospect, North West of Birjand. Journal of Earth Science Researches, 4(4): 56–-69. (in Persian with English abstract)
Javidi Moghaddam, M., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Heidariane Shahri, M.R. 2014. Geology, alteration, mineralization and geochemistry of Shekaste Sabz area prospect, North West of Birjand. Journal of Crystallography and Mineralogy, 22(3): 507–520. (in Persian with English abstract)
Karimpour, M.H. and Saadat, S., 2002. Applied Economic Geology, Ferdowsi University of Mashhad, Mashhad, 535 pp.
Karimpour, M.H., Malekzadeh Shafaroudi, A., Stern, C.R. and Farmer, L., 2012. Petrogenesis of Granitoids, U–Pb zircon geochronology, Sr–Nd isotopic characteristic and important occurrence of Tertiary mineralization within the Lut Block, Eastern Iran. Journal of Economic Geology, 4(1): 1–27. (in Persian with English abstract)
Kaviani Sadr, K., 2012. The effect of structural controls on Mineral deposition in Cheshme Khuri area (North West of Birjand). M.Sc. thesis, Birjand University, Birjand, Iran, 162 pp.
Kouzmanov, K. and Ramboz, C., 2003. Stable isotopic constrains on the origin of epithermal Cu-Au and related porphyry copper mineralizations in the southern Panagyurishte district, Srednogorie zone, Bulgaria. In: D.G. Eliopoulos (Editor), Mineral Exploration and Sustainable Development. Millpress, Rotterdam, pp. 1181–1184.
Large, R.R., Huston, D.M., Goldrick, P. and Tuxton P.A., 1989. Gold distribution and genesis in Australian volcanogenic massive sulfide deposits and their significance for gold transport models. Economic Geology Monographs, 6(1): 520–535.
Lattanzi, P., 1991. Applications of fluid inclusions in the study and exploration of mineral deposits. European Journal of Mineralogy, 3(4): 689–697.
Lesage, G., 2011. Geochronology, Petrography, Geochemical constrain, and fluid characterization of the Buritica gold deposit. Ph.D. thesis, University of Alberta, Alberta, United State America, 152 pp.
Lotfi, M., 1982. Geological and geochemical investigations on the volcanogenic Cu, Pb, Zn, Sb ore-mineralization in the Shurab-Gale Chah and northwest of Khur (Lut, east of Iran). Ph.D. thesis, University of Hamburg, Hamburg, Germany.
Lotfi, M., 1995. Geological map of Sarghanj. Scale 1:100,000. Geological Survey of Iran.
Maanijou, M., Mostaghimi, M., Abdollahy Riseh, M. and Sepahi Gerow, A.A., 2012. Systematic sulfur stable isotope and fluid inclusion studies on veinlet groups in the Sarcheshmeh porphyry copper deposit: based on new data. Journal of Economic Geology, 4(2): 217–239. (in Persian with English abstract)
Malekzadeh Shafaroudi, A., 2009. Geology, mineralization, alteration, geochemistry, microthermometry, isotope studies and determining the mineralization source of Khopic and Maherabad exploration areas. Ph.D. thesis, Ferdowsi University of Mashhad, Mashhad, Iran, 550 pp.
Mir Baloch, A., 2012. Geology, mineralization, geochemistry and processing of satellite images in east of Cheshme Khuri area, Birjand. M.Sc. thesis, Ferdowsi University, Mashhad, Iran, 144 pp.
Naden, J., Killias, S.P. and Darbyshire, D.P.F., 2005. Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: the example of Milos Island, Greece. Geology, 33(7): 541–544.
Nadermezerji, S., Karimpour, M.H. and Malekzadeh Shafaroudi, A., 2017. Geology, Alteration, Mineralization, Geochemistry and Petrology of intrusive units in the Shah Soltan Ali prospect area (Southwest of Birjand, South Khorasan province). Journal of Economic Geology, 9(1): 117–139. (in Persian with English abstract)
Ohmoto, H., 1972. Systematic of sulfure and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551–581.
Ohmoto, H. and Rye, R.O., 1979. Isotopes of sulfur and carbon: In: H.L. Barnes (Editor), Geochemistry of Hydrothermal Ore Deposits, Wiley Interscience, New York, pp. 509–567.
Prokofiev, V.Y., Garofalo, P.S., Bortnikov, N.S., Kovalenker, V.A., Zorina, L.D., Grichuk, D.V. and Selektor, S.L., 2010. Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia. Economic Geology, 105(2): 395–416.
Ridley, J., 2013. Ore Deposit Geology. Cambridge University Pressing, Cambridge, 398 pp.
Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America, United States, 644 pp.
Salim, L., 2012. Geology, petrology and geochemistry of volcanic and sub volcanic rocks in Cheshme Khuri area (North West of Birjand). M.Sc. thesis, Birjand University, Birjand, Iran, 117 pp.
Shepherd, T, Rankin, A.H. and Alderton, D.H.M., 1985. A prac- tical guide to fluid inclusion studies. Blackie, Glasgow, 239 pp.
Sillitoe, R.H., 1993. Epithermal models: Genetic types, geometrical controls and shallow features. Geological Association of Canada, Special Paper, 40(1): 403–417.
Sillitoe, R.H., Steele, G.B., Thompson, J.F.H. and Lang, J.R., 1998. Advanced argillic lithocaps in the Bolivian tin-silver belt. Mineralium Deposita, 33(6): 539–456.
Stoffregen, R.E., 1987. Genesis of acid-sulfate alteration and Au–Cu–Ag mineralization at Summitville, Colorado. Economic Geology, 82(6): 1575–1591.
Tarkian, M., Lotfi, M. and Baumann, A., 1983. Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran. Ministry of mines and metals, Geodynamic project (geotraverse) in Iran, Tehran, Report 51, 26 pp.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1): 229–272.
Ya Hosseini, A., 2012. Geology, mineralization and geochemistry with special reference on industrial applications clay deposits in west of Cheshme Khuri area, Birjand. M.Sc. thesis, Ferdowsi University of Mashhad, Mashhad, Iran, 71 pp.
CAPTCHA Image