Application of Apatite EPMA Analyses in the Haftcheshmeh Cu-Mo Porphyry System as a Chemical Indicator of the Source Magma

Document Type : Research Article

Authors

1 Associate Professor, Department of Geology, Payame Noor University, Tehran, Iran

2 Assistant Professor, Department of Geology, Payame Noor University, Tehran, Iran

Abstract

The Haftcheshmeh Cu-Mo porphyry system is located in the Arasbaran magmatic zone in Alborz-Azarbaijan structure zone, northwestern Iran. As ore mineralization occurred mainly in gabbrodiorite and granodiorite porphyry stocks, chemical compositions of rock forming minerals in gabbrodiorite and granodiorite porphyries are used to identify critical vectors of magmatic processes and hydrothermal mineralization related to the formation. All analyzed (magmatic and hydrothermal) apatites saturation temperatures show ranges of calculated temperatures of 830°C to 877°C and pressures of 0.11 to 0.96 Kbar, corresponding to depths of 4 to 10 km and H2Omelt content (3< wt.%), and suggesting a hydrous calc-alkaline magma generated from a deep magmatic source. Analyzed apatite support the ore forming magmas which are oxidized by I type magma with relatively high ƒO2. The trend of volatile element variations indicated that primary fluid exsolution probably occurred at temperatures from ~712°C to 842°C and was affected by hydrous and oxidized mafic magma from a deeper part of the magma reservoir. It may result in an extensive magma mixture with fractional crystallization of apatite in the evolved gabbrodiorite and granodiorite magma chambers.

Keywords


Adeli, Z., 2012. Mineralogy, geochemistry, genesis, and modeling of the Haftcheshmeh deposit, East Azerbaijan, Iran. Ph.D. Thesis, Islamic Azad University of Tehran, Science and Research Brunch, Tehran, Iran. 275 pp. (in Persian with English abstract)
Azadbakht, Z., Lentz, D.R. and McFarlane, C.R., 2018. Apatite chemical compositions from Acadian-related granitoids of New Brunswick, Canada: implications for petrogenesis and metallogenesis. Minerals, 8‌(12): 598.  https://doi.org/10.3390/min8120598
Bao, B., Webster, J.D., Zhang, D.H., Goldoff, B.A. and Zhang, R.Z., 2016. Compositions of biotite, amphibole, apatite and silicate melt inclusions from the Tongchang mine, Dexing porphyry deposit, SE China: Implications for the behavior of halogens in mineralized porphyry systems. Ore Geology Reviews, 79: 443–462. https://doi.org/10.1016/j.oregeorev.2016.05.024
Doherty, A.L., Webster, J.D., Goldoff, B.A., Piccoli, P.M., 2014. Partitioning behavior of chlorine and fluorine in felsic melt-fluid (s)-apatite systems at 50 MPa and 850-950 °C. Chemical Geology, 384: 94-111.  https://doi.org/10.1016/j.chemgeo.2014.06.023
Hammarstrom, J.M. and Zen, E., 1986. Aluminum-in-hornblende: an empirical igneous geobarometer. American Mineralogist 71(11–12): 1297–1313. Retrieved July 17, 2023 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/71/11-12/1297/104900/Aluminum-in-hornblende-An-empirical-igneous
Harrison, T.M. and Watson, E.B., 1984. The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta 48(7): 1467–1477. https://doi.org/10.1016/0016-7037(84)90403-4
Hassanpour, Sh., 2010. Metallogeny and mineralization of Cu-Au in Arasbaran zone (NW Iran). Unpublished Ph.D. Thesis, Shahid Beheshti University, Tehran, Iran. 231 p‌p.
Hassanpour, S. and Moazzen, M., 2018. Geochronological Constraints on the Haftcheshmeh Porphyry Cu-Mo-Au, Ore Deposit, Central Qaradagh Batholith, Arasbaran Metallogenic Belt, Northwest Iran, ACTA GEOLOGICA SINICA, 91‌(6): 2109–2125. https://doi.org/10.1111/1755-6724.13452
Li, W. and Costa, F., 2020. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochimica et Cosmochimica Acta, 269: 203–222. https://doi.org/10.1016/j.gca.2019.10.035
Li, J.X., Li, G.M., Evans, N.J., Zhao, J.X., Qin, K.Z. and Xie, J., 2020. Primary fluid exsolution in porphyry copper systems: evidence from magmatic apatite and anhydrite inclusions in zircon. Mineralium Deposita, 56‌‌(2): 407–415. https://doi.org/10.1007/s00126-020-01013-4
McCubbin, F.M., Vander Kaaden, K.E., Tartese, R., Boyce, J.W., Mikhail, S., Whitson, E.S., Bell, A.S., Anand, M., Franchi, I.A., Wang, J. and Hauri, E.H., 2015. Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0-1.2 GPa and 950-1000°C. American Mineralogist, 100(8–9): 1790–1802. https://doi.org/10.2138/am-2015-5233
Miles, A., Graham, C., Hawkesworth, C., Gillespie, M., Hinton, R. and Bromiley, G., 2014. Apatite: a new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132: 101–119. https://doi.org/10.1016/j.gca.2014.01.040
Nabavi, H., 1976. An introduction to the geology of Iran: Tehran, Geological Survey of Iran, 109 pp. (in Persian).
Nachit, H., Ibhi, A.., Abia, El-H. and Ben Ohoud, M., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites, and neoformed biotites. Comptes Rendus Geoscience, 337‌(16): 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002
Pan, T., Yuchuan, C., Juxing, T., Ying, W., Wenbao, Z., Qiufeng, L., Bin, L. and Chunneng, W., 2019. Advances in Research of Mineral Chemistry of Magmatic and Hydrothermal Biotites. Acta Geologica Sinica (English Edition), 93(6): 1947–1966. https://doi.org/10.1111/1755-6724.14395
Parat, F., Holtz, F. and Klügel, A., 2011. S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas. Contributions to Mineralogy and Petrology, 162: 463–478. https://doi.org/10.1007/s00410-011-0606-7
Peng, G., Luhr, J.F. and McGee, J.J., 1997. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 8(11–12): 1210–1224. https://doi.org/10.2138/am-1997-11-1217
Piccoli, P.M. and Candela, P., 2002.  Apatite in Igneous Systems. In: J.K. Matthew, J. Rakovan and J.M. Hughes (Editors), Phosphates, De Gruyter, pp. 55–292. https://doi.org/10.1515/9781501509636-009
Piccoli, P., Candela, P. and Williams, T., 1999. Estimation of aqueous HCl and Cl concentrations in felsic systems. Lithos 46(3): 591–604. https://doi.org/10.1016/S0024-4937(98)00084-X
Popa, R.-G., Tollan, P., Bachmann, O., Schenker, V., Ellis, B. and Allaz, J.M., 2021. Water exsolution in the magma chamber favors effusive eruptions: application of Cl-F partitioning behavior at the Nisyros-Yali volcanic area. Chemical Geology, 570: 120170.  https://doi.org/10.1016/j.chemgeo.2021.120170
Ridolfi, F. and Renzulli, A., 2012. Calcic amphiboles in calcalkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130 oC and 2.2 GPa. Contributions to Mineralogy and Petrology, 163: 877–895. https://doi.org/10.1007/s00410-011-0704-6
Sun, W.D., Huang, R.F., Li, H., Hu, Y.B., Zhang, C.C., Sun, S.J., Zhang, L.P., Ding, X., Li, CY., Zartman, R.E. and Ling, M.X., 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65(part 1):  97–131. https://doi.org/10.1016/j.oregeorev.2014.09.004
Webster, J.D., Tappen, C.M. and Mandeville, C.W., 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: felsic silicate systems at 200 MPa. Geochimica et Cosmochimica Acta, 73(3): 559–581. https://doi.org/10.1016/j.gca.2008.10.034
Webster, J., Thomas, R., Foerster, H.J., Seltmann, R. and Tappen, C., 2004. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineralium Deposita, 39(4): 452–472. https://doi.org/10.1007/S00126-004-0423-2
Withney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Zaheri–Abdehvand, N., Hassanpour, S. and Rasa, I., Rajabpour, S., 2022. Silicates chemistry as indicators of physicochemical and geothermometry conditions on porphyry ore system: A case study of the Haftcheshmeh Cu–Mo deposit, NW Iran. Ore Geology Reviews, 142: 104716. https://doi.org/10.1016/j.oregeorev.2022.104716
Zhao, J., Qin, K., Evans, N.J., Li, G. and Shi, R., 2020. Volatile components and magma-metal sources at the Sharang porphyry Mo deposit, Tibet. Ore Geology Reviews, 126: 103779. https://doi.org/10.1016/j.oregeorev.2020.103779
Zhong, S., Feng, C., Seltmann, R., Li, D. and Dai, Z., 2018. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite). Mineralium Deposita, 53(6): 855–870. https://doi.org/10.1007/s00126-017-0787-8
Zhong, S., Li, S., Feng, C., Liu, Y., Santosh, M., He, S., Qu, H., Liu, G., Seltmann, R., Lai, Z., Wang, X., Song, Y. and Zhou, J., 2021. Porphyry copper and skarn fertility of the northern Qinghai-Tibet Plateau collisional granitoids. Earth-Science Reviews, 214: 103524.  https://doi.org/10.1016/j.earscirev.2021.103524
    
CAPTCHA Image