عوامل کنترل‌ کننده کانه‌ زایی روی و سرب در ناحیه تنگ‌ دزدان (شمال‌ شرق فریدون‌ شهر- استان اصفهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه زمین شناسی، واحد خرم آباد، دانشگاه آزاد اسلامی، خرم آباد، ایران

2 دانشیار، گروه زمین شناسی، واحد خرم آباد، دانشگاه آزاد اسلامی، خرم آباد، ایران

چکیده

ناحیه تنگ‌دزدان در غرب استان اصفهان و در 25 کیلومتری شمال‌‌شرق فریدون‌شهر واقع‌شده است. از دیدگاه زمین‌شناسی ساختاری، این ناحیه در زون سنندج- سیرجان قرار دارد. واحدهای سنگی موجود شامل ولکانیک‌های ‌سبزرنگ، ماسه‌سنگ ‌آهکی، آهک تا آهک دولومیتی، کنگلومرا و آهک‌های ماسه‌ای و آبرفت‌های عهد حاضر هستند. توالی سنگی موجود به همراه کانه‌زایی روی و سرب تحت‌تأثیر پدیده‌های زمین‌ساختی، به صورت راندگی و تشکیل چین‌خوردگی‌های باز و درزه‌ها و شکستگی قرار گرفته‌اند. ساختمان‌های اصلی زمین‌شناسی شامل صفحه‌های راندگی است که پولک‌هایی از واحدهای سنگی ژوراسیک و کرتاسه را از شمال‌شرق به سمت جنوب‌غرب بر روی همدیگر رانده است. ساخت‌های چین‌خوردگی در اندازه‌های بسیار کوچک و متراکم و اغلب مرتبط با گسل‌ها، واحدهای سنگی منطقه، به ویژه سنگ‌های نازک لایه آهکی را تحت‌تأثیر قرار‌ داده است. بررسی‌های زمین‌ساختی نشان‌دهنده تأثیر دو گسل عرضی با روند شمال‌شرقی- جنوب‌غربی و یک زون گسله متمرکز در داخل سنگ‌های دولومیتی در روند کانه‌زایی است. کانه‌زایی روی و سرب در پهنه‌های کششی مرتبط با این سامانه گسترش بیشتری نشان می‌دهد. بررسی‌های کانه‌زایی، زمین‌شیمی و میکروسکوپ الکترونی نشان‌دهنده حضور کالامین و مقدار کمی زینسین دولومیت است. واحد سنگی آهک تا آهک دولومیتی میزبان کانی‌سازی روی و سرب بوده و متشکل از عدسی‌ها، رگه و رگچه‌هایی از کانه‌های غیرسولفیدی همانند اسمیت‌زونیت، همی‌مورفیت، سروزیت و باریت و نیز کانه‌های سولفیدی مانند اسفالریت و گالن است. پدیده دولومیتی‌شدن در اثر تأثیر سیالات گرمابی اسیدی باعث دگرسانی سنگ دیواره کربناتی شده است. عامل ساختاری، دلیل اصلی تشکیل این نوع دولومیت و جانشینی منیزیم توسط روی است.

کلیدواژه‌ها


Adelpour, M. and Rostamipaydar, Gh., 2018. The Study of alteration, mineralization, and fluid inclusion in the Howz-e-Sefid zinc-lead deposit (Central Iran). Iranian Journal of Geology, 47(12): 19–36. (in Persian with English abstract) Retrieved November 20, 2022 from http://geology.saminatech.ir/en/Article/9609
Aghanabati, A., 2006. Geology of Iran. Geological Survey of Iran, 586 pp. (in Persian)
Alavi, M., 1991. Tectonic map of the Middle East: Tehran scale 1:5000000. Geological Survey of Iran.
Amiri, A., 2017. Mineralogical evolutions of carbonate-hosted Zn-Pb-(F-Mo) deposits in Kuhbanan-Bahabad area, Central Iran: metal source approach. Journal of Tethys, 5(1): 001–032. Retrieved November 20, 2022 from https://jtethys.journals.pnu.ac.ir/article_3802_2a22475947e9c3ddd28633398345e689.pdf
Blenkinsop, T.G., 2000. Deformation microstructures and mechanisms in minerals and rocks, Department of Geology. University of Zimbabwe, Harare, Zimbabwe. 150P. Retrieved November 20, 2022 from https://link.springer.com/book/10.1007/0-306-47543-X
Boni, M. and Mondillo, N., 2015. The Calamines and the others: the great family of supergene nonsulfide zinc ores. Review paper. Ore Geology Reviews, 67: 208–233. https://doi.org/10.1016/j.oregeorev.2014.10.025
Boni, M., Mondillo, N. and Balassone, G., 2011. Zincian dolomite: a peculiar dedolomitization case? Geology, 39(2): 183–186. https://doi.org/10.1130/G31486.1
Davies, H.L., 2012. The geology of New Guinea - the cordilleran margin of the Australian continent. Episodes, 35(1): 87–102. https://doi.org/10.18814/epiiugs/2012/v35i1/008
Delavar, S.T., Rasa, I., Lotfi, M., Borg, G., Rashidnejad Omran, N. and Afzal., P., 2014. Geological evidence and ore body facies of TangedezdanZa-Pb (Ag) deposit in Jurassic-cretaceous carbonate sequence, Booeen Miandasht (Isfahan-Iran). Scientific Quarterly Journal of Geoscience. 23(91): 77–88. (in Persian with English abstract). https://doi.org/10.22071/gsj.2014.43777
Ehya, F., Lotfi, M. and Rasa, I., 2010. Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study. Journal of Asian Earth Sciences, 37(2): 235–249. https://doi.org/10.1016/j.jseaes.2009.08.007   
Forster, H., 1978. Mesozoic - Cenozonic metallogensis in Iran. Geological Society- London, 135 pp.
Ghazban, F., McNutt, R.H. and Schwarcz, H.P., 1994. Genesis of sediment-hosted Zn-Pb-Ba deposits in the Iran Kouh district, Esfaha area, West-Central Iran. Economic Geology, 89(6): 1262–1278. https://doi.org/10.2113/gsecongeo.89.6.1262
Hill, K.C. and Raza, A., 1999. Arc continental collision in papua guinea-constraints from fission track thermocoronology. Tectonics, 18(6): 950–966. https://doi.org/10.1029/1999TC900043
Holm, R.J., Spandler, C. and Richards, S.W., 2015. Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea. Gondwana Research, 28(3): 1117–1136. http://dx.doi.org/10.1016/j.gr.2014.09.011
Karimpour, M.H., Malekzadeh Shafaroudi, A., Alaminia, Z., Esmaeili Sevieri, A. and Stern, C.R., 2019. New hypothesis on time and thermal gradient of subducted slab with emphasis on dolomitic and shale host rocks in formation of Pb-Zn deposits of IrankuhAhangaran belt. Journal of Economic Geology. 10(2): 677–706. (in Persian with English abstract) https://doi.org/10.22067/econg.v10i2.76528
Kouhjani, V., Mousivand, F., Rajabi, A., 2016. Structure, texture, ore facies and genesis of Hafthar zinc-lead ore deposit, southwest of Aqda, 9th conference society of Economic Geology of Iran, Birjand University, Birjand, Iran. (in Persian) Retrieved November 20, 2022 from https://search.ricest.ac.ir/dl/search/defaultta.aspx?DTC=36&DC=220112
Lawrence, J.D., 2010. Model of the copper and polymetallic vein family of deposits-Applications in Slovakia, Hungary and Romania. International Geology Review. 45(2): 143–156. https://doi.org/10.2747/0020-6814.45.2.143
Lecumberri-Sanchez, P., Romer, R.L., Luders, V. and Bodnar, R., 2014. Genetic relationships between silver-lead zinc mineralization in the Wutong deposit, Guangxi Province and Mesozoic granite magmatism in the Nanling belt, southeast China. Mineralium Deposita, 49: 353–369. https://doi.org/10.1007/s00126-013-0494-z
Luke, G., Nigel, J., Cook, C., Ciobanu, L. and Benjamin, P.W., 2015. Trace and minor elements in galena: A reconnaissance LAICP-MS study. American Mineralogist, 100(2–3): 548–569. https://doi.org/10.2138/am-2015-4862
Miller, E.L., Gehrels, G.E., Pease, V. and Sokolov, S., 2010. Stratigraphy and U-Pb detrital zircon geochronology of Wrangel Island, Russia: Implications for Arctic paleogeography. American Association of Petroleum Geologists Bulletin, 94(5): 665–692. https://doi.org/10.1306/10200909036
Mohajjel, M. and Fergusson, C.L., 2013. Jurassic to Cenozoic tectonics of the Zagros orogeny in northwestern, Iran. International Geology Review. 56(3): 263–287. https://doi.org/10.1080/00206814.2013.853919
Momenzadeh, M., 1976. Stratabound lead-zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west central Iran), lithology, metal content, zonation and genesis. Ph.D. Thesis, University of Heidelberg, Heidelberg, Germany, 300 pp. Retrieved February 8, 2023 from https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1787858
Mondillo, N., Boni, M., Joachimski, M., Santoro, L., 2017. C–O Stable Isotope Geochemistry of Carbonate Minerals in the Nonsulfide Zinc Deposits of the Middle East: A Review. Minerals, 7(11): 2–13. https://doi.org/10.3390/min7110217
Montest, L.G.J. and Hirth, G., 2003. Grain size evolution and the rheology of ductile shear zone: from laboratory experiments to postseismic creep. Earth and Planetary Science Letters, 211(1–2): 97–110. https://doi.org/10.1016/S0012-821X(03)00196-1
Nabatian, GH., Rastad, E., Neubauer, F., Honamand, M. and Ghaderi, M., 2015. Iron and FeMn Mineralization in Iran implications for Tethyan metallogeny. Australian Journal of Earth Sciences, 62(2): 211–241. https://doi.org/10.1080/08120099.2015.1002001
Newton, T., 2013. Geochemistry of the Timberville Zn-Pb District, Rockingham County, VA. Ph.D. thesis, University of Maryland, Maryland, USA, 27 pp. Retrieved November 20, 2022 from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.727.6187&rep=rep1&type=pdf
Peacock, S.M., 1992. Blueschist-facies metamorphism, shear heating and P-T- t paths in subduction shear zones. Journal of Geophysical Research, 97(B12): 17693–17707. https://doi.org/10.1029/92JB01768
Rajabi, A., Rastad, E., Alfonso, P. and Canet, C., 2012a. Geology, ore facies and sulphur isotopes of the Koushk vent-proximal sedimentary-exhalative deposit, Posht-e-Badam Block, Central Iran. International Geology Review, 54(14): 1635–1648. https://doi.org/10.1080/00206814.2012.659106
Rajabi, A., Rastad, E. and Canet, C., 2012b. 2012b. Metallogeny of Permian–Triassic carbonate-hosted Zn–Pb and F deposits of Iran: A review for future mineral exploration. Australian Journal of Earth Sciences, 60(2): 197–216. https://doi.org/10.1080/08120099.2012.754792
Ramazani, M. and Tucker, R.D., 2003. The Saghand region, central Iran, U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(7): 622–665. http://dx.doi.org/10.2475/ajs.303.7.622
Ramsay, J.G. and Huber, M.I., 1987. The Techniques of Modern Structural Geology, Vol. 2, Folds and Fractures. Pergamon Press, London, 365 pp.
Schellart, W.P., Stegman, D.R., Farrington, R.J. and Moresi, L., 2011. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning. Journal of geophysical research, 116(B10): 1–15. https://doi.org/10.1029/2011JB008535
Soheili, M., Jafarian, M.B. and Abdollahi, M.R., 1992. Geological map of Aligudarz Scale 1:100000. Geological Society of Iran.
Stearns, D.W. 1968. Certain Aspects of Fracture in Naturally Deformed Rocks. In: Riecker, R.E., Ed., NSF Advanced Science Seminar in Rock Mechanics, Air Force Cambridge Research Laboratories Special Report, Bedford, MA, 97–118. Retrieved February 8, 2023 from https://www.scirp.org/(S(351jmbntvnsjt1aadkozje))/reference/referencespapers.aspx?referenceid=2146883
Thiele, O., Alavi, M. and Assefi, R., 1967. Geological map of Golpaygan Scale 1:250000. Geological Society of Iran.
Verdel, C., Wernicke, B.P., Hassanzadeh, J. and Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics, 30(3): 1–20. https://doi.org/10.1029/2010TC002809
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 85–187. http://dx.doi.org/10.2138/am.2010.3371
Wilkinson, J.J., 2014. Sediment-hosted zinc-lead mineralization: Processes and perspectives. Treatise on Geochemistry, 13: 219–248. https://doi.org/10.1016/B978-0-08-095975-7.01109-8
Yasemi, N., Ghaderi, M., Madanipour, M. and Taghilou, B., 2017. Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran. ore Geology Reviews, 86: 212–224. https://doi.org/10.1016/j.oregeorev.2017.01.028
CAPTCHA Image