ماگماتیسم آداکیتی بعد از میوسن گنبد نیمه‌آتشفشانی قرائی، منطقه ماه‌ نشان (غرب زنجان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد زمین شناسی، گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

2 دانشیار، گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

چکیده

گنبد نیمه ­آتشفشانی قرائی واقع در غرب زنجان، بخشی از کمان ماگمایی ارومیه- دختر در پهنه ایران مرکزی است. گنبد قرائی درزه­ های ستونی از خود نشان می­ دهد و به داخل توالی سازند قرمز بالایی به سن میوسن و توده گرانیتوئیدی کهریزبیک به سن پروتروزوئیک بالایی نفوذ کرده است. بر اساس بررسی‌های سنگ‌نگاری، سنگ‌های این گنبد دارای ترکیب داسیت- ریوداسیت با بافت پورفیری و گلومروپورفیری بوده و شامل درشت‌بلورهای پلاژیوکلاز، بیوتیت، کوارتز و گاه هورنبلند و سانیدین در زمینه دانه‌ریز است. در نمودارهای سنگ‌شناسی، سنگ‌های گنبد قرائی داری ترکیب داسیت، ریوداسیت و تراکی‌داسیت بوده و ماهیت کالک‌آلکالن پتاسیم بالا تا شوشونیتی دارند. در الگوی تغییرات عناصر کمیاب بهنجارشده نسبت به گوشته اولیه، نمونه‌های گنبد قرائی غنی‌شدگی در LILE (Rb، Ba، Th، U، K و Cs)، همراه با بی‌هنجاری منفی HFSE (Nb، P و Ti) و بی‌هنجاری مثبت شاخص در Pb را نشان می‌دهند. در الگوی عناصر کمیاب خاکی بهنجارشده به کندریت نیز یک الگوی غنی از LREE نسبت به HREE با نسبت بالای LREE/HREE مشاهده می‌شود. سنگ‌های گنبد قرائی، ویژگی‌های زمین‌شیمیایی مشابه آداکیت‌ها داشته و در زمره آداکیت‌های غنی از سیلیس طبقه‌بندی می‌شوند. سنگ‌های گنبد نیمه­ آتشفشانی قرائی از ماگمای با درجه ذوب ‌بخشی بیش از 25 درصد پوسته زیرین با ترکیب گارنت- آمفیبولیت در یک محیط پس از برخورد تشکیل شده‌اند.

کلیدواژه‌ها


Amaral, W.D.S., Santos, T.J.S. and Wernik, E., 2011. Occurrence and geochemistry of meta-mafic rocks from the Forquilha Eclogite zone central Ceara (NE Brazil): geodynamic implications. Geological Journal, 46(2–3): 135–137. https://doi.org/10.1002/gj.1224
Bavi, M.H., Kouhestani, H. and Mokhtari, M.A.A., 2023. Genesis of the Moghanlou Sb deposit (west of Zanjan): Evidence from geology, mineralization, geochemistry, and fluid inclusions. Advanced Applied Geology, 13(1): 40–71.  (in Persian with extended English abstract) https://doi.org/10.22055/aag.2022.40141.2282
Bonin, B., 2004. Do coeval mafic and felsic magmas in post-collisional to within plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78(1–2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.042
Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: Meteorite studies, In: P. Henderson (Editor), Rare Earth Element Geochemistry, Elsevier, 63–114. Retrieved January 15, 2024 from https://www.sciencedirect.com/science/article/pii/B9780444421487500083
Cameron, B.I., Walker, J.A., Carr, M.J., Patino, L.C., Matias, O. and Feigenson, M.D., 2003. Flux versus decompression melting at stratovolcanoes in southeastern Guatemala. Journal of Volcanology and Geothermal Research, 119(1-4): 21–50. https://doi.org/10.1016/S0377-0273(02)00304-9
Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(10): 662–665. https://doi.org/10.1038/347662a0
Fazelvalipour, M.E., 2021. Petrography, geochemistry and petrogenesis of high-silica accccccc rocks from Bayram Abad area in the northwest Neyshabour (Northeast of Iran). Petrological Journal, 45(1): 113–134. (in Persian with Enblish abstract) https://doi.org/10.22108/ijp.2021.124930.1200
Foley, S. and Peccerillo, A., 1992. Potassic and ultrapotassic magmas and their origin. Lithos, 28(3-6): 181–185. https://doi.org/10.1016/0024-4937(92)90005-J
Foley, S.F. and Wheler, G.E., 1990. Parallels in the origin of the geochemical signature of island arc volcanic rocks and continental potassic igneous rocks: The role of titanites. Chemical Geology, 85(1-2): 1–18. https://doi.org/10.1016/0009-2541(90)90120-V
Gorton, M.P. and Schandle, E.S., 2002. From continental to island arc: A geochemical index of the tectonic setting for arc-related and within plate felsic to intermediate volcanic rocks. The Canadian Mineralogist, 38(5): 1065–1073. https://doi.org/10.2113/gscanmin.38.5.1065
Hastie, A.R., Kerr, A.C., McDonald, I., Mitchell, S.F., Pearce, J.A., Millar, I.L., Barfod, D. and Mark, D.F., 2010. Geochronology, geochemistry, and petrogenesis of rhyodacite lavas in eastern Jamaica: A new adakite subgroup analogous to early Archaean continental crust? Chemical Geology, 276(3–4): 344-359. https://doi.org/10.1016/j.chemgeo.2010.07.002
Hastie, A.R., Kerr, A.C., Pearce, J.A. and Mitchell, S.F., 2007. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341–2357. https://doi.org/10.1093/petrology/egm062
Heidari, S.M., Ghaderi, M. and Kouhestani, H., 2017. Sediment-hosted epithermal gold mineralization at Arabshah, SE Takab, NW Iran. Geosciences Scientific Quarterly Journal, 27(105): 262–285. (in Persian with extended English abstract)  https://doi.org/10.22071/gsj.2017.53971
Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8(5): 523–276.  https://doi.org/10.1139/e71-055
Jahangiri, A., 2008. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30(3–4): 433–447. https://doi.org/10.1016/j.jseaes.2006.11.008
Jamshidi, Kh., Ghasemi, H., Troll, V.R., Sadeghian, M. and Dahren, B., 2015. Magma storage and plumbing of adakite-type post-ophiolite intrusions in the Sabzevar ophiolitic zone, NE Iran. Journal of Solid Earth, 6(1): 49–72. https://doi:10.5194/se-6-49-2015
Jiang, Y.H., Liu, Z., Jia, R.Y., Liao, S.Y., Zhou, Q. and Zhao, P., 2012. Miocene potassic granite-syenite association in western Tibetan Plateau: Implications for shoshonitic and high Ba-Sr granite genesis. Lithos, 134–135(3): 146–162. http://dx.doi.org/10.1016/j.lithos.2011.12.012
Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C. and McDonald, G.D., 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology, 144(10): 38–56. https://doi.org/10.1007/s00410-002-0374-5
Koepke, J., Schoenborn, S., Oelze, M., Wittmann, H., Feig, S.T., Hellebrand, E., Boudier, F. and Schoenberg, R., 2009. Petrogenesis of crustal wehrlites in the Oman ophiolite: Experiments and natural rocks. Geochemistry, Geophysics, Geosystems, 10(10): 1–26. https://doi.org/10.1029/2009GC002488
Le Bas, M.J., Le Maitre, R.W., Strecheisen, A. and Zanttin, B., 1986. A chemical of volcanic rocks classification based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.1093/petrology/27.3.745
Lotfi, M., 2001. Geological Map of Mahneshan, scale1:100000. Geological Survey of Iran.
Machado, A.T., Chemale, J.F., Conceicao, R.V., Kawaskita, K., Morata, D., Oteiza, O. and Schmus, W.R.V., 2005. Modeling of subduction components in the Genesis of the Meso-Cenozoic igneous rocks from the South Shetland Arc, Antarctica. Lithos, 82(3–4): 435–453 https://doi.org/10.1016/j.lithos.2004.09.026
Martin, H., 1993. The mechanisms of petrogenesis of the Archaean continental crust, comparison with modern processes. Lithos, 30(3–4): 373–388. https://doi.org/10.1016/0024-4937(93)90046-F
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D., 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1–2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048
McDonough, W.F. and Sun, S.S., 1995. Composition of the Earth. Chemical Geology, 120(3–4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
Middlemost, E.A. K., 1994. Naming materials in the magma and igneous rock system. Science Reviews, 37(3-4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
Mokhtari, M.A.A., Kouhestani, H. and Bavi, M.H., 2023. Moghanlou Sb deposit (west of Zanjan): Evidence of geology, mineralization, and fluid inclusions. 25th Conference of the geological society of Iran, Shahroud University of Technology, Shahroud, Iran. (in Persian with extended English abstract) Retrieved January 15, 2024 from https://gsi25.shahroodut.ac.ir/fa/files.php
Muller, D. and Groves, D.I., 1997. Potassic igneous rocks and associated gold copper mineralization. 2nd edition, Springer, Verlag, Berlin, 311 pp. https://doi.org/10.1007/978-3-319-23051-1
Najafzadeh, M., Ebrahimi, M., Mokhtari, M.A.A. and Kouhestani, H., 2017. The Arabshah occurrence: an epithermal Au-As-Sb Carlin-type mineralization in the Takab-Angouran-Takht-e-Soleyman metallogenic zone, western Azerbaijan. Advance applied Geology, 6(4): 62–77. (in Persian with extended English abstract) https://doi.org/10.22055/aag.2016.12709
Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Chu, C.H., Lee, H.Y. and Lo, C.H., 2013. Eocene-Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: Magma genesis and tectonic implications. Lithos, 180–181(11): 234–251. https://doi.org/10.1016/j.lithos.2013.05.009
Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. C.J. Hawkesworth and M.J.  Norry (Editors), Continental basalts and mantle xenoliths, Nantwich, Cheshire: Shiva Publications, pp. 230–249. https://orca.cardiff.ac.uk/id/eprint/8626
Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/BF00384745
Plank, T., 2005. Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the Evolution of the Continents. Journal of Petrology, 46(5): 921–944. https://doi.org/10.1093/petrology/egi005
Rezaei Kahkhaei, M., Corfu, F., Galindo, C., Rahbar, R. and Ghasemi, H., 2022. Adakite genesis and plate convergent process: Constraints from whole rock and mineral chemistry, Sr, Nd, Pb isotopic compositions and U-Pb ages of the Lakhshak magmatic suite, East Iran. Lithos, 426–427. https://doi.org/10.1016/j.lithos.2022.106806
Rezaei Kahkhaei, M., Taheri, S.A., Ghasemi, H. and Gardideh, S., 2018. Geochemistry and isotope geology of adakitic domes from Chakane area in south of Quchan (northeast of Iran). Petrological Journal, 9(4): 25–48. (in Persian with extended English abstract) https://doi.org/10.22108/ijp.2018.104209.1031
Rollinson, H.R., 1993. Using Geochemical Data: Evolution, Presentation, Interpretation. Longman Scientific and Technical. England, 384 pp. https://doi.org/10.4324/9781315845548
Rudnick, R.L. and Gao, S., 2003. Composition of the continental Crust. Treatise on Geochemistry, 3(1): 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4
Saadat, S., 2023. Adakitic magmatism, a window to evolution on tectonic and mineralization in eastern Iran. Journal of Economic Geology, 15(1): 87–113. (in Persian with English abstract) https://doi.org/10.22067/econg.2023.80308.1062
Sabzi, Z., Mokhtari, M.A.A. and Ebrahimi, M., 2018. Petrology and geochemistry of Ayoub Ansar volcanic dome, southeast Takab. Researches in Earth Sciences, 9(1): 103–117. https://doi.org/10.29252/esrj.9.1.103
Saccani, E., 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6(4): 481–501. https://doi.org/10.1016/j.gsf.2014.03.006
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42: pp. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P. and Deng, W., 1996. Post-collision, shoshonitic volcanism on the Tibetan, Plateau: implications for convective thinning of the lithosphere and source of ocean island basalts. Journal of Petrology, 37(1): 45–71. https://doi.org/10.1093/petrology/37.1.45
Varekamp, J.C., Hesse, A. and Mandeville, C.W., 2010. Back-arc basalts from the Loncopue graben (province of Neuquen, Argentina). Journal of Volcanology and Geothermal Research, 197(1): 313–328. https://doi.org/10.1016/j.jvolgeores.2010.04.003
Vetrin, V.R. and Rodionov, N.V., 2008. Sm-Nd Systematics and petrology of post-orogenic Granitoids in the Northern Baltic Shield. Geochemistry International, 46(11): 1090–1106. https://doi.org/10.1134/S0016702908110037
Wallin, E.T. and Metcalf, R.V., 1998. Supra-subduction zone ophiolite formed in an extensional forearc: Trinity Terrane, Klamath Mountains, California. The Journal of Geology, 106(5): 591–608. https://doi.org/10.1086/516044
Wang, K.L. and Chung, S.L., 2004. Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region. Journal of Petrology, 45(5): 975–1011. https://doi.org/10.1093/petrology/egh001
Wang, Q., McDermott, F., Xu, J.F., Bellon, H. and Zhu, Y.T., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology, 33(6): 465–468. https://doi.org/10.1130/G21522.1
Wang, Q., Wyman, D.A., Xu, J.F., Wan, Y.S., Li, C.F., Zi, F., Jiang, Z.Q., Qiu, H.N., Chu, Z.Y. Zhao, Z.H. and Dong, Y.H., 2007. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab derived melts in the mantle wedge. Contribution to Mineralogy and Petrology, 155(4): 473–490. https://doi.org/10.1007/s00410-007-0253-1
Wayer, S., Munker, C. and Mezgar, K., 2003. Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust-mantle system. Earth and Planetary Scince Letters, 205(3–4): 306–324. https://doi.org/10.1016/S0012-821X(02)01059-2
Wilson, M., 1989. Igneous Petrogenesis. Chapman and Hall, London, 466 pp. https://doi.org/10.1007/978-94-010-9388-0
Winchester, J.A. and Floyd, P.A., 1977. Geochemical classification of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(5): 325–343. https://doi.org/10.1016/0009-2541(77)90057-2
Whitney, D.L. and Evans, B.W., 2010. Abbreviation for names of rock- forming minerals. American Mineralogist, 95(1):185–187. https://doi.org/10.2138/am.2010.3371
Yousefi, F., Sadeghian, M., Wanhainen, C., Ghasemi, H., Lambrini, P., Bark, G., Rezaei Kahkhaei, M. and Koroneos, A., 2017. Mineral Chemistry and P-T Conditions of the adakitic rocks from Torud-Ahmad Abad Magmatic Belt, S-SE Shahrood, Iran. Journal of Geochemical Exploration, 182(10): 110–120. https://doi.org/10.1016/j.gexplo.2017.09.006
CAPTCHA Image