##plugins.themes.bootstrap3.article.main##

فرید مر عباس اعتمادی سینا اسدی نسیم فتاحی

چکیده

کانسار مس جیان در حاشیه شرقی زون دگرگونی سنندج- سیرجان، در جنوب ایران (195 کیلومتری شمال‌شرق شیراز) و در توالی آتشفشانی- رسوبی دگرگون شده سوریان به سن پرموتریاس قرار گرفته است. کانه زایی، عمدتاً شامل پیریت، کالکوپیریت و مقدار کمتری اسفالریت، پیروتیت و اندکی گالن، کوبانیت و مس خالص می اشد. کانه زایی شکافه پرکن (مانند رخداد رگه ها و رگه‌چه های کانه دار) در ارتباط با وافشارش هیدرولیک و نشان دهنده کانه زایی ثانویه در منطقه است.
اثرات حاصل از فرآیندهای دگرگونی دینامیک و گرمایی به‌صورت بافتهای شاخص این دگرگونیها در ماده معدنی قابل تشخیص است. رخداد فعالیت دگرگونی-گرمابی در این منطقه باعث تشکیل دو گروه رگه های کوارتزی کانه دار (تیپ A) و رگه های کوارتزی بی کانه (تیپ B) شده است. مطالعه میانبارهای سیال و ایزوتوپ های پایدار اکسیژن و هیدروژن بر روی این رگه ها نیز تکامل سیال دگرگونی-گرمابی را طی دو مرحله متفاوت نشان می دهد. مرحله نخست از کانه‌زایی در ارتباط با یک سیال دما بالا (بیش از 303 درجه سانتی‌گراد)، نسبتاً شور (میانگین 10 درصد وزنی معادل NaCl) و با غلظت بالای CO2 (بیش از 7/2 درصد وزنی) بوده است. این سیال در ادامه با کاهش دما (میانگین 183 درجه سانتی‌گراد) و شوری (میانگین 4/5 درصد وزنی معادل NaCl) در محیطهای سطحی با نهشت روتیل همراه بوده است. این رگه ها تاریخچه برهمکنش سیال- سنگ را در سنگ میزبان دگرگونی کمپلکس سوریان، طی سرد شدگی، بالا آمدگی و کشش نهایی طی فرآیند دگرگونی پس‌رونده که منجر به کانه زایی مس شده است، ثبت کرده اند. همچنین اثر ناچیز فرآیند غنی‌شدگی سطحی زاد1 در این کانسار با تغییرات جزئی ایزوتوپ های مس(δ65Cu = -0.45 to +0.49 ‰) نیز تأیید‌کننده کانه زایی مس با منشأ اولیه و عمقی است.

جزئیات مقاله

مراجع
Agard, P., Monie, P., Gerber, W., Omrani, J., Molinaro, M., Labrousse, L., Vrielynck, B., Meyer, B., Jolivet, L. and Yamato, P., 2006. Transient, syn-obduction exhumation of Zagros blueschists inferred from P–T–deformation–time and kinematic constraints: implications for Neotethyan wedge dynamics. Journal of Geophysical Research: Solid Earth, 111(11): 1-28.

Alirezaei, S., 2009. Stable Isotope Geochemistry. Press University Publication Center, Tehran, 332 pp.

Anderson, R., Graham, C.M., Boyce, A.J. and Fallick, A.E., 2004. Metamorphic and basin fluids in quartz-carbonate-sulphide veins in the SW Scottish Highlands: a stable isotope and fluid inclusion study. Geofluids, 4(2): 169-185.

Asadi, S., Moore, F. and Fattahi, N., 2013. Fluid inclusion and stable isotope constraints on the genesis of the Jian copper deposit, Sanandaj–Sirjan metamorphic zone, Iran. Geofluids, 13(1): 66–81.

Borrak, D.M., Navarrete, J.U. and Kafantaris, F.C.A., 2012. A model for copper isotopic fractionation during weathering and transport. 22th Goldschmidt Conference, Montreal, Canada.

Clayton, R.N., and Mayeda, T.K., 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27(1): 43-52.

Cook, N.J., 1994. Post-recrystallisation mobilization phenomena in metamorphosed stratabound sulphide ores .Mineralogical magazine, 57(1): 482-486.

Craig, J.R., Voke, F.M. and Solberg, T.N., 1998. Pyrite: physical and chemical textures. Mineralium Deposita, 34(1): 82-101.

Ehrlich, S., Butler, I., Halicz, L., Rickard, D., Oldroyd, A., and Matthews, A., 2004. Experimental study of the copper isotope fractionation between aqueous Cu (II) and covellite, CuS. Chemical Geology, 209(3): 259-269.

Evans, A.M., 1997. An Introduction to Economic Geology and its Environmental Impact. John Wiley and Sons, London, 403 pp.

Fallick, A.E., Jocelyn, J., and Hamilton, P.J., 1987. Oxygen and hydrogen stable isotope systematics in Brazilian agates, In: R. Rodriguez-Clemente (Editor), Geochemistry of the earth surface and processes of mineral formation. Instituto de Geologia (Consejo Superior de Investigaciones Científicas-Spanish National Research Council), Madrid, pp. 99-117.

Fattahi, N., 2013. Study of geochemistry and the copper genesis in the Surian complex, Jian (Bavanat, Fars province). M.Sc. Thesis, Shiraz University, Shiraz, Iran, 241 pp.

Haest, M., Muchez, P., Petit, J.C. and Vanhaecke, F., 2009. Cu isotope ratio variations in the Dikulushi Cu-Ag deposit, DRC: of primary origin or induced by supergene reworking? Economic Geology. 104(7): 1055-1064.

Hoefs, J., 2009. Stable Isotope Geochemistry. Springer, Amsterdam, 203 pp.

Liaghat, S. and Jami, M., 1999. The history of the ore microscopy applications. Shiraz University Press, Shiraz, 273 pp.

Liaghat, S. and Taghipour, N., 2000. Genesis of Jian occurrence. 4th Symposium of Geological Society of Iran, University of Tabriz, Tabriz, Iran. (in Persian)

Mathur, R., Ruizi, J.,Titley, S., Liermann, L., Buss, H. and Brantley, S., 2005. Cu isotopic fractionation in the supergene environment with and without bacteria. Geochimica et Cosmochimica Acta, 69 (22): 5233–5246.

Mathur, R., Titley, S., Barra, F., Brantley, S., Wilson, M., Phillips, A., Munizaga, F., Maksaev, V., Vervoort, J. and Hart, G., 2009. Exploration potential of Cu isotope fractionation in porphyry copper deposits. Journal of Geochemical Exploration, 102(3): 1–6.

Matsuhisa, Y., Goldsmith, J.R. and Clayton, R.N., 1979. Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochimica et Cosmochimica Acta, 43(2): 1131-1140.

McClay, K.R. and Ellis, P.G., 1984. Deformation of pyrite. Economic Geology, 79(2): 400-403.

Molinaro, M., Leturmy, P., Guezou, J.C., Frizon de Lamotte, D. and Eshraghi, S.A., 2005. The structure and kinematics of the southeastern Zagros fold–thrust belt, Iran: From thin-skinned to thick-skinned tectonics. Tectonics, 24(3): 1-19.

Moore, F., Asadi, S. and Fattahi, N., 2011. Metamorphic-Hydrothermal fluid evolution based on thermo-barometry and stable isotope studies in Bavanat copper deposit, Sanandaj-Sirjan zone. 15th Symposium of Geological Society of Iran, Tarbiat Moallem University, Tehran, Iran. (in Persian)

Mousivand, F., Rastad, E., Hoshino, K. and Watanabe, M., 2007. The Bavanat Cu-Zn-Ag orebody: first recognition of a Besshi-type VMS deposit in Iran. Neues Jahrbuch für Mineralogie-Abhandlungen, 183(3): 297-315.

Rajabzadeh, M.A. and Esmailei, S., 2012. Petrography and geochemistry of meta-basalts of Jian copper deposit. 15th Symposium of Geological Society of Iran, University of Tehran, Tehran, Iran. (in Persian)

Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Publisher, London, 345 pp.

Sarkarinejad, Kh., 2007. Quantitative finite strain and kinematic flow analyses along the Zagros transpression zone, Iran. Tectonophysics, 442(1): 49-65.

Scott, S.D., Both, R.A. and Kissin S.A., 1971. Sulfide petrology of the Broken Hill region, New South Wales. Economic Geology, 72(8): 1410-1425.

Sheikholeslami, M.R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H. and Emami, M.H., 2008. Tectono-metamorphic evolution of the Neyriz metamorphic complex, Quri-Kor-e-Sefid area (Sanandaj-Sirjan Zone, SW Iran). Journal of Asian Earth Sciences, 31(4-6): 504–521.

Spry, A., 1969. Metamorphic Textures. Pergamon Press, Oxford, 286 pp.

Stanton, R.L., 1972. Ore Petrology. McGraw-Hill, New York, 713 pp.

Taghipour, N. and Moore, F., 2000. Texture and REE geochemistry in the Jian copper occurrence. Iranian Journal of Crystallography and Mineralogy, 10(2): 51–65.

Walker, E.C., Cuttitta, F., and Senftle, F.E., 1958. Some natural variations in the relative abundance of copper isotopes. Geochimica et cosmochimica acta, 15(3): 183-194.

Zarasvandi, A., Liaghat, S. and Moore, F., 2001. Geochemical prospecting project of copper in the Bavanat area, Fars Province. 5th Symposium of Geological Society of Iran, University of Tehran, Tehran, Iran. (in Persian)

Zhang, L.G., Liu, J.X., Zhou. H.B. and Chen, Z.S., 1989. Oxygen isotope fractionation in the quartz-water-salt system. Economic Geology, 84(6): 1643-1650.
ارجاع به مقاله
مر ف., اعتمادی ع., اسدی س., & فتاحی ن. (2015). کانه زایی و فرآیند آب‌ شویی در کانسار مس جیان شمال‌ شرق استان فارس: کاربردی از پتروگرافی و ایزوتوپ های پایدار. زمین‌شناسی اقتصادی, 7(1), 147-163. https://doi.org/10.22067/econg.v7i1.32007
نوع مقاله
علمی- پژوهشی