Aghanabati, A., 2004. Geology of Iran. Geological Survey of Iran, Tehran, 606 pp. (in Persian)
Aloisi, G., Wallmann, K., Bollwerk, S.M., Derkachev, A., Bohrmann, G. and Suess, E., 2004. The effect of dissolved barium on biogeochemical processes at cold seeps. Geochimica et Cosmochimica Acta, 68(8): 1735–1748.
https://doi.org/10.1016/j.gca.2003.10.010
Arjmandfar, J., 2017. Rationale, technical, and economic planning of Abdosamadi barite deposit. Central office of Kuhastan cooperative company, 1240, Sanandaj, Report, 380 pp. (in Persian)
Azizi, H., Najari, M., Asahara, Y.J., Catlos, E., Shimizu, M. and Yamamoto, K., 2015. U-Pb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern Sanandaj-Sirjan Zone, Iran: Evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic. Tectonophysics, 660: 47–64.
https://doi.org/10.1016/j.tecto.2015.08.008
Baioumy, H.M., 2015. Rare earth elements, S and Sr isotopes and origin of barite from Bahariya Oasis, Egypt: Implication for the origin of host iron ores. Journal of African Earth Sciences, 106: 99–107.
https://doi.org/10.1016/j.jafrearsci.2015.03.016
Barrat, J-A., Keller, F., Amossé, J., Taylor, R., Nesbitt, R. and Hirata, T., 1996. Determination of rare earth elements in sixteen silicate reference samples by ICP-MS after Tm addition and ion exchange separation. Geostandards and Geoanalytical Research, 20(1): 133–139.
https://doi.org/10.1111/j.1751-908X.1996.tb00177.x
Bau, M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3/4): 219–230.
https://doi.org/10.1016/0009-2541(91)90115-8
Bau, M. and Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1): 37–55.
https://doi.org/10.1016/0301-9268(95)00087-9
Bender, M., Broecker, W., Gornitz, V., Miduel, U., Kay, R. and Suns, S., 1971. Geochemistry of three cores from the east Pacific rise. Earth and Planetary Science Letters, 12(4): 425–433.
https://doi.org/10.1016/0012-821X(71)90028-8
Brewer, T.S., Ahall, K-L., Menuge, J.F., Storey, C.D. and Parrish, R.R., 2004. Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pre-Sveconorwegian continental margin tectonism. Precambrian Research, 134(3–4): 249–273.
https://doi.org/10.1016/j.precamres.2004.06.003
Clark, S.H.B., Poole, F.G. and Wang, Z., 2004. Comparison of some sediment-hosted, stratiform barite deposits in China, the United States, and India. Ore Geology Reviews, 24(1–2): 85–101.
https://doi.org/10.1016/j.oregeorev.2003.08.009
Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H. and Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28: 199–260.
https://doi.org/10.1016/0009-2541(80)90047-9
De Ronde, C., Faure, K., Bray, C.M., Chappell, D.A. and Wright, I.C., 2003. Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Mineralium Deposita, 38: 217–233.
https://doi.org/10.1007/s00126-002-0305-4
Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A. and Fletcher, A., 1994. Construction of the Mississippian, Pennsylvanian and Permian seawater
87Sr/
86Sr curve. Chemical Geology, 112(1–2): 145–167.
https://doi.org/10.1016/0009-2541(94)90111-2
Douville, E., Bienvenu, P., Charlou, J.I., Donval, J.P., Fouquet, Y., Appriou, P. and Gamo, T., 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5): 627–643.
https://doi.org/10.1016/S0016-7037(99)00024-1
Ehya, F., 2012. Rare earth element and stable isotope (O, S) geochemistry of barite from the Bijgan deposit, Markazi Province, Iran. Mineralogy and Petrology, 104: 81–93.
https://doi.org/10.1007/s00710-011-0172-8
Eickmann, B., Thorseth, I.H., Peters, M., Strauss, H., Bröcker, M. and Pedersen, R.B., 2014. Barite in hydrothermal environments as a recorder of sub-seafloor processes: A multiple isotope study from the Loki’s Castle vent field. Geobiology, 12(4): 308–321.
https://doi.org/10.1111/gbi.12086
Fouquet, Y., Pelleter, E., Konn, G., Chazot, G., Dupré, S., Alix, A.S., Chéron, S., Donval, J.P., Guyader, V., Etoubleau, J., Charlou, J.L., Labanieh, S. and Scalabrin, C., 2018. Volcanic and hydrothermal processes in submarine calderas: The Kulo Lasi example (SW Pacific).
Ore Geology Reviews, 99: 314–343.
https://doi.org/10.1016/j.oregeorev.2018.06.006
Franklin, J.M., Gibson, H.L., Jonasson, I.R. and Galley, A.G., 2005. Volcanogenic massive sulfide deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, and J.P. Richards (Editors), Economic Geology 100th anniversary Volume. New Haven, CT, USA, pp. 523–560.
https://doi.org/10.5382/AV100.17
Giesemann, A., Jager, H.J., Norman, A.L., Krouse, H.P. and Brand, W.A., 1994. Online sulfur-isotope determination using an elemental analyzer coupled to a mass-spectrometer. Analytical Chemistry, 66: 2816–2819.
https://doi.org/10.1021/ac00090a005
Goldberg, E.D., Somayajulu, L.K., Galloway, J., Kaplan, I.R. and Faure, G., 1969. Differences between barites of marine and continental origins. Geochimica et Cosmochimica Acta, 33(2): 287–289.
https://doi.org/10.1016/0016-7037(69)90145-8
Guichard, R., Church, T.M., Treuil, M. and Jaffrezic, H., 1979. Rare earths in barites: distribution and effects on aqueous partitioning. Geochimica et Cosmochimica Acta, 43(7): 983–997.
https://doi.org/10.1016/0016-7037(79)90088-7
Hannington, M.D., de Ronde, C.E.J. and Petersen, S., 2005. Seafloor tectonics and submarine hydrothermal systems. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, and J.P. Richards (Editors), Economic Geology 100th anniversary Volume. New Haven, CT, USA, pp. 111–141.
https://doi.org/10.5382/AV100.06
Hannington, M.D., Poulsen, K.H., Thompson, J.F.H. and Sillitoe, R.H., 1999. Volcanogenic gold in the massive sulfide environment. Reviews in Economic Geology, 8: 325–356.
https://doi.org/10.5382/Rev.08.14
Hanor, J.S., 2000. Barite- celestine geochemistry and environments of formation, in sulfate minerals-crystallography, geochemistry and environmental significance. Reviews in Mineralogy and Geochemistry, l40(1): 193–275.
https://doi.org/10.2138/rmg.2000.40.4
Hasankhanloo, S., 2015. Geology, mineralogy, deformation and genesis of Abdossamadi barite deposit in the late Cretaceous volcano-sedimentary sequence, northeast Marivan. M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 134 pp. (in Persian with English abstract)
Haynes, W.M., Lide, D.R. and Bruno, T.J., 2016. Abundance of elements in Earth's crust and in
Hein, J.R., 2002. Continental margin hydrothermal mineralization; Southern California Borderland. 32nd Underwater Mining Conference, Wellington, New Zealand.
Hein, J.R., Zierenberg, R.A., Maynard, J.B. and Hannington, M.D., 2007. Barite-forming environments along a rifted continental margin, Southern California Borderland. Deep Sea Research Part II Topical Studies in Oceanography, 54(11): 1327–1349.
https://doi.org/10.1016/j.dsr2.2007.04.011
Herzig, P.M., Hannington, M.D., Fouquet, Y., von Stackelberg, U. and Petersen, S., 1993. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Economic Geology, 88(8): 2182–2209.
https://doi.org/10.2113/gsecongeo.88.8.2182
Hofmann, R. and Baumann, A., 1984. Preliminary report on the Sr isotopic composition of hydrothermal vein barites in the Federal Republic of Germany. Mineralium Deposita, 19: 166–169.
https://doi.org/10.1007/BF00204681
Jamieson, J.W., Hannington, M.D., Tivey, M.K., Hansteen, T., Williamson, N.M., Steward, M., Fietzke, J., Butterfield, D., Frische, M., Allen, L., Cousens, B. and Langer, J., 2016. Precipitation and growth of barite within hydrothermal vent deposits from the Endeavour Segment, Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 173: 64–85.
https://doi.org/10.1016/j.gca.2015.10.021
Jewell, P.W., 2000. Bedded barite in the geological record. In: C.R. Glenn, J. Lucas and L. Prevot (Editors), Marine authigenesis: from global to microbial. SEPM Society for Sedimentary Geology, Special Publication, USA, 66, pp. 147–161.
https://doi.org/10.2110/pec.00.66.0147
Jewell, P.W. and Stallard, R.F., 1991. Geochemistry and paleoceanographic setting of central Nevada bedded barites. The Journal of Geology, 99(2): 151–170.
https://doi.org/10.1086/629482
Kontak, D.J., Kyser, K., Gize, A. and Marshall, D., 2006. Structurally controlled vein barite mineralization in the Maritimes basin of eastern Canada: geological setting, stable isotopes, and fluid inclusions. Economic Geology, 101(2): 407–430.
https://doi.org/10.2113/gsecongeo.101.2.407
Koski, R.A. and Hein, J.R., 2003. Stratiform barite deposits in the Roberts Mountains Allochthon, Nevada: A review of potential analogs in modern sea-floor environments. In: J.D. Bliss, P.R. Moyle and K.R. Long (Editors), Contributions to Industrial-Minerals Research. U.S. Geology Survey Bulletin, USA, pp. 1–17.
https://doi.org/10.3133/b2209H
Kurian, S., Nath, B.N., Ramaswamy, V., Naman, D., Rao, G., Kamesh Raju, K.A., Selvaraj, K. and Chen, C.T.A., 2008. Possible, detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin. Marine Geology, 247(3–4): 178–193.
https://doi.org/10.1016/j.margeo.2007.09.006
Kusakabe, M. and Robinson, B.W., 1977. Oxygen and sulfur isotope equilibria in the BaSO
4-H
2SO
4-H
2O system from 110 to 350°C and applications. Geochim. Cosmochim. Acta, 41(8): 1033–1040.
https://doi.org/10.1016/0016-7037(77)90098-9
Kusakabe, M., Mayeda, S. and Nakamura, E., 1990. S, O, and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading-axis at 88°N. Earth and Planetary Science Letters, 100(1–3): 275–282.
https://doi.org/10.1016/0012-821X(90)90190-9
Lever, M.A., Rouxel, O., Alt, J.C., Shimizu, N., Ono, S., Coggon, R.M., Shanks, W.C., Lapham, L., Elvert, M., Prieto-Mollar, X., Hinrichs, K.U., Inagaki, F. and Teske, A., 2013. Evidence for microbial carbón and sulfur cycling in deeply buried ridge flank basalt. Science, 339(6125): 1305–1308.
https://doi.org/10.1126/science.1229240
Maanijou, M., Vafaei Zad, M. and Aliani, F., 2016. Fluid inclusion and sulfur stable isotope evidence for the origin of the Ahangran Pb-Ag deposit. Journal of Economic Geology, 7(2): 343–367. (in Persian with English abstract)
https://doi.org/10.22067/econg.v7i2.25816
Martin, E.E., Macdougall, J.D., Herbert, T.D., Paytan, A. and Kastner, M., 1995. Strontium and neodymium isotopic analysis of marine barite separates. Geochimica et Cosmochimica Acta, 59(7): 1353–1361.
https://doi.org/10.1016/0016-7037(95)00049-6
Maynard, J.B., Morton, J., Valdes-Nodarse, E.L. and Diaz-Carmona, A., 1995. Sr isotopes of bedded barites; guide to distinguishing basins with Pb-Zn mineralization. Economic Geology, 90(7): 2058–2064.
https://doi.org/10.2113/gsecongeo.90.7.2058
Maynard, J.B. and Okita, P.M., 1991. Bedded barite deposits in the United States, Canada, Germany, and China; two major types based on tectonic setting. Economic Geology, 86(2): 364–376.
https://doi.org/10.2113/gsecongeo.86.2.364
Mohajjel, M., Fergusson, C.L. and Sahandi, R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj- Sirjan Zone, western Iran. Journal of Asian Earth Sciences, 21(4): 397–412.
https://doi.org/10.1016/S1367-9120(02)00035-4
Monnin, C. and Cividini, D., 2006. The saturation state of the world’s ocean with respect to (Ba, Sr)SO
4 solid solution. Geochimica et Cosmochimica Acta, 70(13): 3290–3298.
https://doi.org/10.1016/j.gca.2006.04.002
Mousivand, F., Rastad, E., Emami, M.H. and Peter, J.M., 2013. Formation of Various Types of Volcanogenic Massive Sulfide (VMS) Deposits and Its Relationship With Tectono-Magmatic Evolution in the Sanandaj-Sirjan Zone. Scientific Quarterly Journal, Geosciences, 23 (90): 11–20. (in Persian with English abstract)
http://dx.doi.org/10.22071/gsj.2014.43901
Ohmoto, H., Mizukami, M., Drummond, S.E., Eldridge, C.S., Pisutha-Arnond, V. and Barton, P.B.Jr., 1983. Chemical processes of Kuroko formation. In: H. Ohmoto and B.J. Skinner (Editors), The Kuroko and related volcanogenic massive sulfide deposits. Society of Economic Geologists, USA, 5, pp. 570–604.
https://doi.org/10.5382/Mono.05.32
Paropkari, A.L., Ray, D., Balaram, V., Prakash, L.S., Mirza, I.H., Satyanarayana, M., Rao, T.G. and Kaisary, S., 2010. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: the geochemical perspectives. Journal of Asian Earth Science, 38(3–4): 121–130.
https://doi.org/10.1016/j.jseaes.2009.12.003
Paytan, A., Gray, E.T., Ma, A., Erhardt, A. and Faul, K., 2011. Application of sulphur isotopes for stratigraphic correlation. Isotopes in Environmental and Health Studies, 48(1): 195–206.
https://doi.org/10.1080/10256016.2011.625423
Paytan, A., Kastner, M., Martin, E.E., Macdougall, J.D. and Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature, 366: 445–449.
https://doi.org/10.1038/366445a0
Reeves, E.P., Seewald, J.S., Saccocia, P., Bach, W., Craddock, P.R., Shanks, W.C., Sylva, S.P., Walsh, E., Pichler, T. and Rosner, M., 2011. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochimica et Cosmochimica Acta, 75(4): 1088–1123.
https://doi.org/10.1016/j.gca.2010.11.008
Sánchez-Espańa, F.J., Velasco, F. and Yusta, I., 2000. Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain). Applied Geochemistry, 15(9): 1265–1290.
https://doi.org/10.1016/S0883-2927(99)00119-5
Shahpasandzadeh, M. and Gurabjairi, A., 2006. Geological map of Bayenjub, scale 1:100,000. Geological Survey of Iran.
Sheikholeslami, M.R., 2015. Tectonstratigraphic units of southeastern part of the Sanandaj-Sirjan Zone. Scientific Quaterly Journal, Geosciences, 24(95): 243–252. (in Persian with English abstract)
http://dx.doi.org/10.22071/gsj.2015.42068
Shields, G., Kimura, H., Yang, J. and Gammon, P., 2004. Sulphur isotopic evolution of Neoproterozoic-Cambrian seawater: new francolitebound sulphate δ
34S data and a critical appraisal of the existing record. Chemical Geology, 204(1–2):163–182.
https://doi.org/10.1016/j.chemgeo.2003.12.001
Stern, R.J., Tamura, Y., Ishizuka, O., Shukano, H., Bloomer, S.H., Emb-ley, R.W., Leybourne, M., Kawabata, H., Nunokawa, A., Nichols, A.R.L., Kohut, E. and Pujana, I., 2013. Volcanoes of the Diamante cross-chain: Evidence for a mid-crustal felsic magma body beneath the southern Izu-Bonin-Mariana arc. Geological Society London Special Publication, 385(1): 235–255.
https://doi.org/10.1144/SP385.6
Stix, J., Kennedy, B., Hannington, M., Gibson, H., Fiske, R., Mueller, W. and Franklin, J., 2003. Caldera-forming processes and the origin of submarine volcanogenic massive sulfide deposits. Geology, 31(4): 375–378.
https://doi.org/10.1130/0091-7613(2003)031<0375:CFPATO>2.0.CO;2
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematic of ocean basalts: implications for mantle composition and process. Geological Society, London, Special Publication, 42(1): 313–345.
https://doi.org/10.1144/GSL.SP.1989.042.01.19
Tajeddin, H., Rastad, E., Yaghubpur, A. and Mohajjel, M., 2010. Evolution trends in the formation of Barika gold-rich massive sulfide deposit, West of Sardasht, NW Sanandej-Sirjan metamorphic zone, based on structure, texture and fluid inclusion studies. Journal of Economic Geology, 2(1): 97–121. (in Persian with English abstract)
https://doi.org/10.22067/econg.v2i1.3688
Tütken, T., Eisenhauer, A., Wiegand, B. and Hansen, B.T., 2002. Glacial interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments. Changes in sediment provenance triggered by Barents Sea ice sheet. Marine Geology, 182(3-4): 351-372.
https://doi.org/10.1016/S0025-3227(01)00248-1
Velasco, F., Sánchez-Espańa, J., Boyce, A.J., Fallick, A.E., Sáez, R. and Almodóvar, G.R., 1998. A new sulphur isotopic study of some IPB deposits: evidence of a textural control on the sulphur isotope composition. Mineralium Deposita, 34: 4–18.
https://doi.org/10.1007/s001260050182
Williams-Jones, A.E., Samson, I.M. and Olivo, G.R., 2000. The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico. Economic Geology, 95(2): 327–342.
https://doi.org/10.2113/95.2.327
Yang, K. and Scott, S.D., 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature, 383: 420–423.
https://doi.org/10.1038/383420a0
Zarasvandi, A.R, Zaheri, N., Pourkaseb, H., Chrachi, A. and Bagheri, H., 2014.
Geochemistry and fluid-inclusion microthermometry of the Farsesh barite deposit, Iran. Geologos, 20(3): 201–214.
https://doi.org/10.2478/logos-2014-0015
ارسال نظر در مورد این مقاله