مقایسه سیستم‌ های مس پورفیری سونگون و کیقال، شمال غرب ایران : با تأکید بر مطالعه سیالات درگیر

نوع مقاله : علمی- پژوهشی

نویسندگان

1 بوعلی سینا

2 شیراز

3 نیوبرونزویک

4 مجتمع مس سونگون

چکیده

منطقه فلززایی اهر- ارسباران یکی از مهم‌­ترین زون‌های فلززایی ایران در ترشیاری به‌شمار می­‌رود. کانه­‌زایی در منطقه اغلب وابسته به سنگ‌های ماگمایی ترشیاری است. از این منطقه، دو سیستم مس پورفیری سونگون و کیقال برای بررسی مقایسه­‌ای نحوه کانه­‌زایی انتخاب شدند. بر روی این دو کانی‌سازی بررسی زمین‌­شیمی، سیالات درگیر و کانی­‌شناسی انجام‌شد. انواع سیالات درگیر دو معدن مشابه و شامل نوع دو فازی مایع- گاز (L-V)، نوع دو فازی گاز- مایع (V-L)، نوع سه فازی مایع- گاز- جامد (گاهی هماتیت) (L-V-S)، نوع سه فازی مایع- گاز - نمک (L-V-H) و نوع چهار فازی مایع-  گاز- نمک- جامد (L-V-H-S) است. نتایج نشان داد که با وجود شباهت سنگ درون‌گیر، سنگ مادر و انواع سیالات درگیر و حتی شوری و دمای همگن­ سازی تقریباً مشابه، در وسعت دگرسانی، ضخامت پوسته و میزان CO2 سیالات آنها تفاوت­‌هایی وجود دارد. به بیان دیگر معدن سونگون به‌علت ضخامت بیشتر لیتوسفر شرایط بهتری در تأمین فلزات و تشکیل کانی­‌های سولفیدی داشته است. همچنین حضور CO2 و تشکیل فرایند نامیژاکی سیال در افزایش pH و ته­‌نشینی کانسنگ سونگون مؤثر بوده است و این موجب بارور بودن معدن سونگون و نیمه­ بارور بودن اندیس کیقال شده است.

کلیدواژه‌ها


Asadi, S., Moore, F. and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Science Reviews, 138(1): 25–46.
Asadi, S., Moore, F., Zarasvandi, A. and Khosrojerdi, M., 2013. First report on the occurrence of CO2-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralisation processes in a continental collision setting. Geologos, 19(4): 301–320.
Asghari, O. and Hezarkhani, A., 2010. Investigations of alteration zones based on fluid inclusion microthermometry at Sungun porphyry copper deposit NW Iran. Bulletin of the Mineral Research and Exploration, 140(2):19–34.
Asghari, O., Hezarkhani, A. and Soltani, F., 2009. The comparison of alteration zones in the Sungun porphyry copper deposit, Iran (based on fluid inclusion studies). Acta Geologica Polonica, 59(1): 93–109.
Barnes, H.L., 1997. Geochemistry of hydrothermal ore deposits. John Wiley and Sons, Canada, 975 pp.
Brown, P.E., 1989. FLINCOR; a microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist, 74(11): 1390–1393.
Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 21(7): 767–780.
Calagari, A.A., 2004. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, 23(2): 179–189.
Candela, P.A., 1997. A review of shallow, ore-related granites: textures, volatiles, and ore metals. Journal of Petrology, 38(12): 1619–1633.
Dilek, Y., Imamverdiyev, N. and Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: Collision-induced mantle dynamics and its magmatic fingerprin. International Geology Review, 52(4-6):536–557.
Graupner, T., Kempe, U., Spooner, E.T., Bray, C.J., Kremenetsky, A.A. and Irmer, G., 2001. Microthermometric, laser Raman spectroscopic, and volatile-ion chromatographic analysis of hydrothermal fluids in the Paleozoic Muruntau Au-bearing quartz vein ore field, Uzbekistan. Economic Geology, 96(1): 1–23.
Groves, D.I. and Bierlein, F.P., 2007. Geodynamic settings of mineral deposit systems. Journal of the Geological Society, 164(1):19–30.
Hassanpour, S., 2010. Metallogeney and mineralization of Cu-Au in Arasbaran Zone, NW of Iran. Ph.D. Thesis, Shahid Beheshti University, Tehran, Iran, 320 pp.
Hassanpour, S., Alirezaei, S., Selby, D. and Sergeev, S., 2014. SHRIMP zircon U–Pb and biotite and hornblende Ar–Ar geochronology of Sungun, Haftcheshmeh, Kighal, and Niaz porphyry Cu–Mo systems: evidence for an early Miocene porphyry-style mineralization in northwest Iran. International Journal of Earth Sciences, 104(1): 1–15.
Heinrich, C., Günther, D., Audetat, A. and Ulrich, T., Frischknecht, R., 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27(8): 755–758.
Heinrich, C.A., 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Mineralium Deposita, 39(8): 864–889
Hezarkhani, A. and Williams-Jones, A.E., 1998. Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran; evidence from fluid inclusions and stable isotopes. Economic Geology, 93(5): 651–670.
Jamali, H., Dilek, Y., Daliran, F., Yaghubpur, A. and Mehrabi, B., 2010. Metallogeny and tectonic evolution of the Cenozoic Ahar–Arasbaran volcanic belt, northern Iran. International Geology Review, 52(4–6): 608–630.
Jamali, H. and Mehrabi, B., 2014. Relationships between arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran Magmatic Belt. Ore Geology Reviews, 65(2): 487–501.
John, D., Ayuso, R., Barton, M., Blakely, R., Bodnar, R., Dilles, J., Gray, F., Graybeal, F., Mars, J. and McPhee, D., 2010. Porphyry copper deposit model, chap. B of Mineral deposit models for resource assessment, US Geological Survey Scientific Investigations Report, 169 pp.
Kouzmanov and K., Pokrovski, G.S., 2012. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) system, In: J.W. Hedenquist, M. Harris and F. Camus (Editors), Geology and Genesis of Major Copper Deposits and Districts of the World. The Society of Economic Geologists, Geneva, Switzerland, pp. 573–618.
Li, G., Peacor, D.R. and Essene, E.J., 1998. The formation of sulfides during alteration of biotite to chlorite-corrensite. Clays and Clay Minerals, 46(6): 649–657
Maanijou, M. and Mostaghimi, M., 2013. The mass balance calculation of hydrothermal alteration in Sarcheshmeh porphyry copper deposit. Journal of Economic Geology, 5(2): 175–199.
Maanijou, M., Mostaghimi, M., Riseh, M.A. and Gerow, A.A.S., 2012. Systematic sulfur stable isotope and fluid inclusion studies on veinlet groups in the Sarcheshmeh porphyry copper deposit, based on new data. Journal of Economic Geology, 4(2): 217–239. (in Persian)
Mehrpartou, M., 1993. Contributions to the geology, geochemistry, ore genesis and fluid inclusion investigations on Sungun Cu-Mo porphyry deposit (North-West of Iran). Unpublished Ph.D. thesis, Hamburg University, Hamburg, Germany, 245 pp.
NICICO )National Iranian Copper Industries Company), 2006. Geological report and map on Kighal area in Scale 1: 5000. NICICO, Tehran, Report RC-02/5363301-P/OC/1385/00/0-1221, 350 pp.
Penniston-Dorland, S.C., 2001. Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. American Mineralogist, 86(5–6): 652–666.
Petruk, W., 2000. Applied mineralogy in the mining industry. Elsevier, Ontario, 268 pp.
Putnis, A., 2002. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66(5): 689–708.
Richards, J.P., 2015, Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70(30): 323–345
Roedder, E. and Ribbe, P., 1984. Fluid inclusions. Mineralogical Society of America, Washington, DC, 468 pp.
Rusk, B.G., Reed, M.H. and Dilles, J.H., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology, 103(2): 307–334.
Sillitoe, R.H., 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic geology, 67(2): 184–197.
Sillitoe, RH. 2000. Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. In: S.G. Hagemann and P.E. Brown (Editors), Reviews in Economic Geology. The Society of Economic Geologists, London, pp. 315–345.
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41.
Simmonds, V., 2013. Geochemistry and petrogenesis of an adakitic quartz-monzonitic porphyry stock and related cross-cutting dike suites, Kighal, northwest Iran. International Geology Review, 55(9): 1126–1144.
Simmonds, V., Calagari, A.A. and Kyser, K., 2013. Fluid inclusion and stable isotope studies of the Kighal porphyry Cu–Mo prospect, East-Azarbaidjan, NW Iran. Arabian Journal of Geosciences, Fluid inclusion and stable isotope studies of the Kighal porphyry Cu–Mo prospect, East-Azarbaidjan, NW Iran. Arabian Journal of Geosciences, 8(1): 1–17.
Shafiei, B., 2010. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic-metallogenetic implications. Ore Geology Reviews, 38(1): 27–36.
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(6): 265–283.
Taghizadeh-Farahmand, F., Sodoudi, F., Afsari, N. and Ghassemi, M.R., 2010. Lithospheric structure of NW Iran from P and S receiver functions. Journal of Seismology, 14(4): 823–836.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1): 185–187.
Wilkinson, J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1): 229–272.
Williams, S.A. and Cesbron, F.P., 1977. Rutile and apatite: useful prospecting guides for porphyry copper deposits. Mineralogical Magazine, 41(318): 288–292.
Zhang, H.D., Zhang, H.F., Santosh, M. and Li, S.R., 2014. Fluid inclusions from the Jinchang Cu–Au deposit, Heilongjiang Province, NE China: Genetic style and magmatic-hydrothermal evolution. Journal of Asian Earth Sciences, 82(12): 103–114.
Ziaii, M., Ardejani, F.D., Ziaei and M., Soleymani, A.A., 2012. Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry. Applied Geochemistry, 27(3): 663–676.
Ziaii, M., Carranza, E.J.M. and Ziaei, M., 2011. Application of geochemical zonality coefficients in mineral prospectivity mapping. Computers and Geosciences, 37(12): 1935–1945.
CAPTCHA Image