بررسی شرایط فیزیکوشیمیایی توده نفوذی مولد کانسار مس- طلای پورفیری-اپی ترمال مسجدداغی با استفاده از ترکیب شیمیایی بیوتیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه زمین‌شناسی، دانشگاه پیام نور، تهران، ایران

2 دکتری، گروه علوم زمین، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی ، تهران، ایران

3 استادیار، گروه اکتشاف معدن، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

کانسار مس- طلای پورفیری- اپی­ ترمال مسجدداغی در انتهای غربی زون ساختاری البرز- آذربایجان، در حاشیه جنوبی پهنه قفقاز کوچک جای‌گرفته است. توده دیوریت پورفیری ائوسن که به درون سنگ ­های آتشفشانی آندزیتی نفوذکرده است، به رخداد کانه ­زایی رگه ­ای کوارتز- طلادار که با دگرسانی ­های پتاسیک، فیلیک، آرژیلیک و پروپیلیتیک همراه است، منجر‌شده است. بررسی‌های ریزکاو الکترونی نشان می ­دهد که بیوتیت‌های موجود در زون پتاسیک مسجدداغی در رده فلوگوپیت قرار داشته و در گروه بیوتیت­های تعادل مجدد یافته  (متعلق به گروه بیوتیت­ های ماگمایی) جای گرفته ­اند. جایگاه تکتونوماگمایی و ماهیت ماگمایی توده‌های نفوذی این کانسار در ارتباط با گرانیتوئیدهای کالک‌آلکالن است که از گوشته منشأ گرفته ­اند. دماسنجی بیوتیت در کانسار مسجدداغی دمایی بین 417 تا 641 درجه سانتی‌گراد را نشان می ­دهد. شرایط فوگاسیته اکسیژن در بیوتیت ­­های ماگمایی در محدوده بافر هماتیت- مگنتیت و نیکل- اکسید نیکل قرار گرفته ­اند که نشان‌دهنده بالا بودن فوگاسیته اکسیژن ماگما در این کانسار است. در بیوتیت‌های مسجدداغی بین فوگاسیته هالوژن و خطوط ( log (ƒH2O/ƒHF، log (ƒH2O/ƒHCl) و log (ƒHF/ƒHCl) ) روند خطی/ موازی مشاهده نمی‌شود؛ بنابراین ممکن است، بیوتیت‌ها تحت شرایط یکسانی تشکیل‌نشده‌ باشند و در طیف وسیعی از دما و ترکیب با سیالات گرمابی در تعادل مداوم بوده باشند. مقایسه هالوژن ­های کانسار مسجدداغی با سایر کانسارهای پورفیری در دنیا، تشابه را با کانسارهای بینگهام و سانتاریتا نشان می ­دهد.

کلیدواژه‌ها


Abdel-Rahman, A.M., 1994. Nature ofbiotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of Petrology, 35 (2): 525–541. http://doi.org/10.1093/PETROLOGY/35.2.525
Afshooni, S.Z., Mirnejad, H., Esmaeily, D. and Haroni, H.A., 2013. Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore Geology Review 54: 214–232. https://doi.org/10.1016/j.oregeorev.2013.04.004
Ayati, F., Yavuz, F., Noghreyan, M., Asadi Haroni, H., Yavuz, R., 2008. Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineral. Petrol 94: 107–122. https://doi.org/10.1007/s00710-008-0006-5
Beane, R.E., 1974. Biotite stability in the porphyry copper environment. Economic Geology, 69(2): 241–256. https://doi.org/10.2113/gsecongeo.69.2.241
Bineli Betsi, T. and Lentz, D.R., 2012. Chemical composition of rock-forming minerals in granitoids associated with Au–Bi–Cu, Cu–Mo, and Au–Ag mineralization at the Freegold Mountain, Yukon, Canada: magmatic and hydrothermal fluid chemistry and petrogenetic implications. International Geology Review, 55(6): 657–691. https://doi.org/10.1080/00206814.2012.731767
Boomeri, M., Nakashima, K. and Lentz, D.R., 2010. The Sarcheshmeh porphyry copper deposit, Kerman, Iran: A mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes. Ore Geology Reviews, 38(4): 367–38. https://doi.org/10.1016/j.oregeorev.2010.09.001
Ebrahimi, S., Alirezaei, S., Pan, Y. and Mohammadi, B., 2017. Geology, mineralogy and ore fluid characteristics of the Masjeddaghi gold bearing veins system, NW Iran. Journal of Economic Geology, 9(2): 561-586 (in Persian with English abstract). https://doi.org/10.22067/econg.v9i2.51493
Ebrahimi, S., Pan, Y. and Rezaeian, M., 2021. Origin and evolution of the Masjeddaghi Cu-Au-Mo porphyry and gold epithermal vein system, NW Iran: Constraints from fluid inclusions and sulfur isotope studies. Mineralogy and Petrology, 115: 643–66. https://doi.org/10.1007/s00710-021-00761-z
Foster, M.D., 1960. Interpretation of the composition of trioctahedral micas. United States Geological Survey Professional Paper, 354(B–2):11–49. https://pubs.usgs.gov/pp/0354b/report.pdf
 Hassanpour, Sh. and Alirezaei, S., 2017. Eocene Masjed-Daghi porphyry Cu-Au deposit; an example of island arc porphyry type deposit in NW Iran.  Scientific Quarterly Journal of Geosciences, 26(104): 43–58. (in Persian with English abstract). https://doi.org/10.22071/gsj.2017.50166
Heidari, M., Zarasvandi, A., Rezaei, M., Raith, J. and Adel Saki, A., 2019. Physicochemical attributes of parental magma in collisional porphyry copper systems; using biotite chemistry, case study: Chahfiruzeh porphyry copper deposit. Journal of Economic Geology, 10(2): 561–586. (in Persian with English abstract) https://doi.org/10.22067/econg.v10i2.65652 
Henry, D.J., Guidotti, C.V. and Thomson, J.A., 2005. The Ti-saturation surface for low-to medium pressure meta pelitic biotites: Implications for geothermometry and Tisubstitution mechanisms. American Mineralogist, 90(2–3): 316–328. https://doi.org/10.2138/am.2005.1498
Imamalipour, A., Abdoli Eslami, H. and Hajalilou, B., 2011. Geochemistry of hydrothermal alterations associated with epithermal gold mineralization in Masjeddaghi area, east of Jolfa, NW Iran. Journal of Economic Geology, 2(2): 199–215. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V2I2.7851
Jacobs, D.C. and Parry, W.T., 1979. Geochemistry of biotite in the Santa Rita Porphyry copper deposit, New Mexico. Economic Geology, 74(4): 860–887. https://doi.org/10.2113/gsecongeo.74.4.860
Loferski, P.J. and Ayuso, R.A., 1995. Petrography and mineral chemistry of the composite Deboullie pluton, northern Maine, USA: Implications for the genesis of Cu-Mo mineralization. Chemical Geology, 123(1–4): 89–105. https://doi.org/10.1016/0009-2541(95)00040-S
Moshefi, P., Hosseinzadeh, M.R., Moayyed, M. and Lentz, D.R., 2018. Comparative Study of Mineral Chemistry of Four Biotite Types as Geochemical Indicators of Mineralized and Barren Intrusions in the Sungun Porphyry Cu -Mo Deposit, Northwestern Iran. Ore Geology Review, 97: 1–20. http:/doi.org/10.1016/j.oregeorev.2018.05.003
Munoz, J.L., 1984. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry. 13(1): 469–494. https://doi.org/10.1515/9781501508820-015
Nabavi, H., 1976. An introduction to the geology of Iran. Geological Survey of Iran, Tehran, 109 pp. (in Persian)
Nachit, H., Ibhi, A.B., Abia, El-H., El Hassan, A. and Ben Ohoud, M., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites, and neoformed biotites. Comptes Rendus Geoscience, 337(16): 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002
NICICO (National Iranian copper industries Co.), 2006. Final geological studies on Masjeddaghi, Unpublished interior report.
Parkinson, I.J. and Arculus, R.J., 1999. The redox state of subduction zones: insights from arc peridotites. Chemical Geology, 160(4): 409–423. https://doi.org/10.1016/S0009-2541(99)00110-2
Parry, W.T., Ballantyne, G.H. and Wilson, J.C., 1978. Chemistry of biotite and apatite from a vesicular quartz latite porphyry plug at Bingham, Utah. Economic Geology, 73(7): 1308–1314. https://doi.org/10.2113/gsecongeo.73.7.1308
Parsapoor, A., Khalili, M., Tepley, F. and Maghami, M., 2015. Mineral chemistry and isotopic composition of magmatic, reequilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (Southeast of Iran). Ore Geology Reviews, 66: 200–218. https://doi.org/10.1016/j.oregeorev.2014.10.015
Pourkaseb, H., Zarasvandi, A. and Saed, M., 2017. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry. Journal of Economic Geology, 93(1): 73–92. https://doi.org/10.22067/econg.v9i1.51704
Pourmohammad, A.S., Ahmadi Khalaji, A., Homam, M., Tahmasebi, Z. and Ebrahimi, M., 2020. Geochemistry, petrogenesis and tectonic setting of Geysour granitoid, East Gonabad. Scientific Quarterly Journal, Geosciences, 29(115): 137–150. (in Persian with English abstract) https://doi.org/10.22071/gsj.2019.148243.1533
Rieder, M., Cavazzini, G., Yakonov, Y.D., Frank-Kanetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.W., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1998. Nomenclature of the micas. Clays and Clay Minerals, 36‌(3): 905–912. https://doi.org/10.1346/CCMN.1998.0460513
Selby, D. and Nesbitt, B.E., 2000. Chemical composition of biotite from Casino Porphyry Cu–Au–Mo mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry. Chemical Geology, 171(1–2): 77–93. https://doi.org/10.1016/S0009-2541(00)00248-5
Siahcheshm, K., Calagari, A.A., Abedini, A. and Lentz, D.R., 2012. Halogen signatures of biotites from the Maher-Abad porphyry copper deposit, Iran: characterization of volatiles in syn-to post-magmatic hydrothermal fluids. International Geology Review, 54(12): 1353–1368. https://doi.org/10.1080/00206814.2011.639487
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
Taghavi, A., Maanijou, M., Lentz, D.R., Sepahi-Greow, A.A., Maruoka, T., Fujisaki, W. and Suzuki, K., 2022. Biotite compositions and geochemistry of porphyry-related systems from the central Urumieh Dokhtar Magmatic Belt, western Yazd, Iran: Insights into mineralization potential. Lithos, 412–413: 106593. https://doi.org/10.1016/j.lithos.2022.106593
Tischendorf, G., Gottesmann, B., Förster, H.J. and Trumbull, R.B., 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(409): 809–834. https://doi.org/10.1180/minmag.1997.061.409.05
Yavuz, F., 2003. Evaluating micas in petrologic and metallogenic aspect: I—definitions and structure of the computer program Mica+. Computational Geosciences, 29(10): 1203–1213. https://doi.org/10.1016/S0098-3004(03)00142-0
Zaheri–Abdehvand, N., Hassanpour, S., Rassa, I. and Rajabpour, S., 2022. Silicates chemistry as indicators of physicochemical and geothermometry conditions on porphyry ore system: A case study of the Haftcheshmeh Cu–Mo deposit, NW Iran. Ore Geology Reviews, 142: 104716. https://doi.org/10.1016/j.oregeorev.2022.104716
Zhang, W., Lentz, D.R., Thorne, K.G. and McFarlane, C., 2016. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W–Mo–Cu deposit, west central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems. Ore Geology Reviews, 77: 82–96. https://doi.org/10.1016/j.oregeorev.2016.02.004
Zhu, C. and Sverjensky, D.A., 1992. F–Cl–OH partitioning between biotite and apatite: Geochemica Cosmochimical Acta, 56(9): 3435–3467. https://doi.org/10.1016/0016-7037(92)90390-5
 
CAPTCHA Image