بررسی کانه نگاری، توالی هم‌ یافتی و ایزوتوپ های گوگرد در کانسارهای آهن باباعلی و گلالی در زون سنندج- سیرجان، شمال‌ غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری، زمین‌ شناسی گسترشی، شرکت ملی مناطق نفت‌ خیز جنوب، اهواز، ایران

2 استاد، گروه زمین‌ شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان، ایران؛ گروه زمین‌ شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

3 استاد، گروه زمین‌ شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان، ایران

4 دانشیار، گروه زمین‌ شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان، ایران

5 استادیار، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

6 کارشناسی ارشد، گروه زمین‌ شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان، ایران

چکیده

بخش شمالی پهنه سنندج- سیرجان میزبان کانسارهای آهن مهمی است که طی ماگماتیسم مزوزوئیک شکل گرفته ­اند.کانسارهای آهن باباعلی و گلالی در مرز استان­ های همدان، کردستان و کرمانشاه تشکیل شده‌اند. ماده معدنی در این کانسارها شامل مگنتیت به همراه پیریت، پیروتیت، کالکوپیریت و هماتیت است. بررسی‌های سنگ‌نگاری نشان می­ دهند که دست‌کم دو نسل مگنتیت و یک نسل پیریت در کانسار باباعلی و یک نسل مگنتیت و پیریت در کانسار گلالی تشکیل‌شده­ است. فرایندهای سوپرژن سبب جانشینی مگنتیت­ با هماتیت، گوتیت و لیمونیت در بخش ­های سطحی کانسارها شده ­اند. مقادیر δ34S پیریت­ در کانسار­های باباعلی و گلالی به ترتیب از 8/6+ تا 3/13+ و 1/6+ تا 3/7+ در هزار تغییر می‌‌کند و مقادیر δ34SH2S سیال کانه ­ساز بین 8/7+ تا 3/14+ و 1/7+ تا 3/8+ در هزار محاسبه شده است.شواهد صحرایی و کانه‌نگاری نشان می‌دهند که کانسارهای مورد بررسی از نوع اسکارن هستند. مقادیر δ34S کانسارهای باباعلی و گلالی بیشتر از مقادیر مربوط به منشأ ماگمایی برای کانسارهای اسکارنی است. بنابراین، این مقادیر غنی‌شده مشارکت گوگرد هم از ماگما و هم سنگ‌های میزبان/ دربرگیرنده را نشان می دهند. توده‌های آذرین منطقه مورد بررسی اغلب متشکل از سنگ‌های نفوذی مافیک تا فلسیک هستند که در نتیجه ماگماتیسم حاصل از فرورانش اقیانوس نئوتتیس به زیر خرده قاره ایران مرکزی (CIM) در زمان ژوراسیک پسین- کرتاسه پیشین تشکیل شده‌اند. در اثر جای‌گیری ماگماهای دیوریتی در سنگ‌های کربناته منطقه، کانی‌زایی آهن (مگنتیت) از نوع اسکارن همراه با دگرگونی سنگ‌های میزبان صورت‌گرفته است.

کلیدواژه‌ها


Allègre, C.J., 2008. Isotope geology. Cambridge University Press, Cambridge, United Kingdom. 512 pp.
Barati, M., 2001. Study of the Hamehkasi iron deposit genesis, Hamedan. The 5th Symposium of Geological Society of Iran, Tehran University, Tehran, Iran. Retrieved August 28, 2001 from https://civilica.com/doc/14990
Barati, M., 2012. Mineralogical, geochemistry and sulfur isotopes studies in the Galali orebody, western Iran. Iranian Journal of Crystallography and Mineralogy, 20(2): 215-228. Retrieved Jun 20, 2012 from https://sid.ir/paper/4128/en
Chaussidon, M. and Lorand, J.P., 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochimica et Cosmochimica Acta, 54(10): 2835–2846. https://doi.org/10.1016/0016-7037(90)90018-G
Einaudi, M.T. and Burt, D.M., 1982. Introduction; terminology, classification, and composition of skarn deposits. Economic Geology, 77(4): 745–754. https://doi.org/10.2113/gsecongeo.77.4.745
Eshraghi, S.A., Jafarian, M.B. and Eghlimi, B., 1996. Geological Map of Songhor, scale 1:100000. GeologySurvey of Iran, Tehran.
Eshraghi, S. and Mahmoudi, M., 2003. Geological map of the Tuyserkan area, scale 1:100000, Geology Survey of Iran, Tehran.
Ghorbani, M., 2013. The Economic Geology of Iran. Springer Netherlands, 1st Edition, 572 pp.
Hofes, J., 2009. Stable Isotope Geochemistry. Springer-Verlag, Berlin Heidelberg, 6th Edition, 286 pp.
Ishihara, S., Kajiwara, Y. and Jin, M.S., 2002. Possible carbonate origin of ore sulfur from Geumseong Mo deposit, South Korea. Resource Geology, 52(3): 279–282. https://dx.doi.org/10.1111/j.1751-3928.2002.tb00138.x
Jamshidibadr, M., Collins A.S., Salomao G.N. and Costa, M., 2018. U-Pb zircon ages, geochemistry and tectonic setting of felsic and mafic intrusive rocks of Almogholagh complex, NW Iran. Periodico di Mineralogia, 87(1): 21–53. https://dx.doi.org/10.2451/2018PM761
Lingang, X., Jingwen, M., Fuquan, Y., Hening, D. And Jianmin, Zh., 2010. Geology, geochemistry and age constraints on the Mengku skarn iron deposit in Xinjiang Altai, NW China. Journal of Asian Earth Sciences, 39(5): 423–440. https://doi.org/10.1016/j.jseaes.2010.04.005
Martinez, C.E. and Motto, H.L., 2000. Solubility of lead, zinc and copper added to mineral soils. Environmental Pollution,107(1): 153–158. https://dx.doi.org/10.1016/S0269-7491(99)00111-6
Meinert, L.D., Dipple, G.M. and Nicolescu, S., 2005. World skarn deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Editors), 100th Anniversary Volume, Economic Geology, Society of Economic Geologists, Inc. Littleton, Colorado, pp. 299–336, https://doi.org/10.5382/AV100.11
Mirzaei, R., Ahmadi, A., Mirnejad, H., Gao, J.F., Nakashima, K. And Boomeri, M., 2018. Two-tired magmatic-hydrothermal and skarn origin of magnetite from Gol-Gohar iron ore deposit of SE Iran: in-situ LA-ICP-MS analyses. Ore Geology Reviews,102: 639–653. https://doi.org/10.1016/j.oregeorev.2018.09.025
 Mücke, A. And Younessi, R., 1994. Magnetite-apatite deposits (Kiruna-type) along the Sanandaj-Sirjan zone and in the Bafq area, Iran, associated with ultramafic and calcalkaline rocks and carbonatites. Mineralogy and Petrology, 50: 219–244. https://dx.doi.org/10.1007/BF01164607
Ohmoto, H., 1986. Stable isotope geochemistry of ore deposits. Review in Mineralogy, 16(1): 491–559. Retrieved March 03 from https://pubs.geoscienceworld.org/msa/rimg/article/16/1/491/87194
Ohmoto, H. and Rye, R.O., 1979. Isotopes of sulphur and carbon, in Barnes, H. L. Ed., Geochemistry of hydrothermal ore deposits, 2nd edition, John Wiley and Sons, Inc., New York, p. 509–567. Retrieved March 03 from https://azgs.arizona.edu/azgeobib/isotopes-sulphur-and-carbon-barnes-hl-ed-geochemistry-hydrothermal-ore-deposits-second
Pearson, M.F., Clark, K.F., Porter, E.W. and Gonzalez, S.O., 1988. Mineralogy, fluid characteristics, and silver distribution at Real de Angeles, Zacatecas. Economic Geology, 83(8): 1737–1759. https://dx.doi.org/10.2113/gsecongeo.83.8.1737
Peng, H.J., Mao, J.W., Hou, L., Shu, Q.H., Zhang, C.Q., Liu, H. and Zhou, Y.M., 2016. Stable isotope and fluid inclusion constraints on the source and evolution of ore fluids in the Hongniu-Hongshan Cu Skarn Deposit, Yunnan Province, China. Economic Geology, 111(6): 1369–1396. https://doi.org/10.2113/econgeo.111.6.1369
Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer Science+Business Media B.V., Australia, 1273 pp.
Rees, C.E., Jenkins, W.J. and Monster, J., 1978. The sulphur isotopic composition of ocean water sulphate. Geochemica et Cosmochimica Acta, 42(4): 377–381. https://dx.doi.org/10.1016/0016-7037(78)90268-5
Richards, J.P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Economic Geology, 107(2): 295–332. https://doi.org/10.2113/econgeo.107.2.295
Ripley, E.M., 1981. Sulfur isotopic studies of the Dunka Road Cu-Ni deposit, Duluth Complex, Minnesota. Economic Geology, 76(3): 610–620. https://dx.doi.org/10.2113/gsecongeo.76.3.610
Rollinson, H.R., 1993. Using Geochemical Data: Evolution, Presentation, Interpretation. Longman Scientific and Technical, Wiley, New York, 352 pp.
Rostami Paydar, G. and Adelpour, M., 2023. Fluid inclusion and stable isotope study of the Baba-Ali  and Galali deposits, northwest of Hamedan: Metamorphosed and deformed volcano-sedimentary type of mineralization in northwest of the Sanandaj-Sirjan zone. Researches in Earth Sciences, 14(2): 104–120 (in Persian). https://doi.org/10.48308/esrj.2023.101329
Rye, R.O., 2005. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology, 215(1–4): 5–36. https://dx.doi.org/10.1016/j.chemgeo.2004.06.034
Sarjoughian, F., Habibi, I., Lentz, D.R., Azizi, H. andEsna-Ashari, A., 2020. Magnetite compositions from the Baba Ali iron deposits in the Sanandaj-Sirjan zone, western Iran: Implications for ore genesis. Ore Geology Reviews, 126: 103728. https://dx.doi.org/10.1016/j.oregeorev.2020.103728
Seal, R.R., 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in mineralogy and geochemistry, 61(1): 633–677.  https://dx.doi.org/10.2138/rmg.2006.61.12
Sepahi, A.A., Ghoreishvandi, H., Maanijou, M., Maruoka, T. And Vahidpour, H., 2020. Geochemical description and sulfur isotope data for Shahrak intrusive body and related Fe-mineralization (east Takab), northwest Iran. Island Arc, 29(1): e12367. https://dx.doi.org/10.1111/iar.12367
Sepidar, F., Mirnejad, H. and Li, J.W., 2017. Mineral and stable isotope compositions, phase equilibria and 40Ar-39Ar geochronology from the iron skarn deposit in Sangan, NW Iran. Ore Geology Reviews, 91: 660–681. https://doi.org/10.1016/j.oregeorev.2017.08.029
Sharp, Z., 2017. Principles of Stable Isotope Geochemistry, 2nd Edition, Prentice Hall, 416 pp.
Shirmohammadi, M., Sepahi, A.A., Santos, J.F., Maanijou, M., Torkian, A. and Vahidpour, H., 2023. Geochemistry and Sr–Nd isotopic characteristics of ferroan-magnesian metaluminous granites of the NW Sanandaj–Sirjan zone, Iran: granite formation in a compressional–extensional setting during Late Jurassic time. Geological Magazine, 160(6): 1065–1089. https://doi.org/10.1017/S0016756823000146
Spiro, B. and Puig, A., 1988. The source of sulfur in polymetallic deposits in the cretaceous magmatic arc, Chilean Andes. Journal of South American Earth Sciences, 1(3) :261–266.  https://doi.org/10.1016/0895-9811(88)90004-1
Tavakoli, H., 2004. Mineralogy, Geochemistry and Source of Iron Deposits NW of Hamedan. M.Sc. Thesis, Tarbiat Modarres University, Iran, 156 pp. (in Persian)
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://dx.doi.org/10.2138/am.2010.3371
Zamanian, H. and Asadollahi, B., 2013. Geochemistry and ore potential of the Almoughlagh batholith, western Iran. Geologos, 19(3): 229–242. https://doi.org/10.2478/logos-2013-0014
Zamanian, H. and Radmard, K., 2016. Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran–a key to determine conditions of mineralization. Geologos, 22(1): 33–47. https://doi.org/10.1515/logos-2016-0003
Zamanian, H., Yousefi Yeganeh, B. And Alavi, S.A., 2007. Mineralogical and geochemical skarn zoning across the Baba Ali deposit and its economic geology applications, Western Iran. Geosciences, 16(62): 203–194. Sid. https://Sid.Ir/Paper/401433/En
Zhang, Y., Shao, Y.J., Wu, C.D. and Chen, H.Y., 2017. LA-ICP-MS trace element geochemistry of garnet: constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu-S-Fe-Au deposit, eastern China. Ore Geology Reviews, 86: 426–439. https://doi.org/10.1016/j.oregeorev.2017.03.005
Zharikov, V.A., 1970. Skarns (Part I). International Geology Review, 12(5): 541–559. https://doi.org/10.1080/00206817009475262
 
CAPTCHA Image