کانی سازی سرب- روی در منطقه اکتشافی کلاته پیاله، پهنه کپه داغ: بررسی‌ های کانی سازی، زمین شیمی گالن و میان‌ بارهای سیال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری، گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه زمین‌شناسی و گروه پژوهشی اکتشاف ذخایر معدنی شرق ایران، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

3 کارشناسی ارشد، گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

محدوده اکتشافی کلاته ­پیاله در پهنه کپه ­داغ و 15 کیلومتری شمال ­شرق شهر اسفراین واقع شده ­است. این محدوده شامل واحدهای رسوبی از ژوراسیک (آهک دولومیتی)، کرتاسه (میکروکنگلومرا، آهک، آهک ماسه ­ای، کنگلومرا) و ترشیاری (مارن) است. کانی ­سازی بصورت اپی ­ژنتیک  و از نوع رگه ­ای، در واحدهای آهک دولومیتی و آهک شکل گرفته است. کانی ­سازی شامل دو مرحله ­است: 1- پیریت، گالن و اسفالریت (با بافت ­های جانشینی و برشی) و 2- گالن و اسفالریت (با بافت­ های رگه- رگچه، پرکننده فضای خالی و جانشینی). فراوان ­ترین کانی ­های باطله دولومیت و کلسیت و بمیزان کمتر باریت و کوارتز است. دگرسانی ­های عمده کلسیتی و دولومیتی است. بیشترین بی­ هنجاری ­های زمین‌شیمی در کانی گالن برای روی 1843 گرم در تن، آرسنیک 7 گرم در تن و مس 11 گرم در تن است. بر پایه مطالعات میان­ بارهای سیال (LV) در بلورهای کلسیت همزمان با مرحله اول و دوم کانی ­سازی، دمای همگن­ شدن بترتیب بین 180 تا 265 و 167 تا 214 درجه سانتی­گراد و دامنه تغییرات شوری بین 8/7 تا 5/14 و 7/11 تا 2/12 درصد وزنی نمک­ طعام بدست آمده است. بر پایه شواهدی چون کنترل ساختاری کانی­سازی، نوع دگرسانی ­ها و گسترش خطی آنها، کانی ­شناسی ساده ذخیره، زمین‌شیمی و همچنین شواهد میان بارهای سیال محدوده اکتشافی کلاته ­پیاله مشابه کانسارهای اپی­ترمال سرب- روی می ­باشد.

کلیدواژه‌ها


Aghanabati, S.A., 2004. Geology of Iran. Geological Survey of Iran, Tehran, 586 pp.
Bodnar, R.J, 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions, Geochimica et Cosmochimica Acta, 57(3): 683–684. https://doi.org/10.1016/0016-7037(93)90378-a
 
Davis, D.W., Lowenstein, T.K. and Spencer, R.J., 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O and NaCl–CaCl2–H2O, Geochimica et Cosmochimica Acta, 54(3): 591–601. https://doi.org/10.1016/0016-7037(93)90378-a 
 
Gokce, A., 2000. Ore deposits, Cumhuriyet University Publication, Sivas, 336pp.
Goodfellow, W. D. and Lydon, J. W., 2007. Sedimentary exhalative (SEDEX) deposits. In: W.D. Goodfellow (Editor), Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological association of Canada, Canada, pp. 163–183. Retrieved August 16, 2023 from https://doi.org/10.2113/gsecongeo.102.7.1355
 
Hitzman, M. W., Redmond, P. B. and Beaty, D. W., 2002. The carbonate-hosted Lisheen Zn-Pb-Ag deposit, County Tipperary, Ireland. Economic Geology, 97 (8): 1627–1655. https://doi.org/10.2113/gsecongeo.97.8.1627 
 
Jafarian, M.B. and Haft Lang, R., 2004. Geological map of Shirvan, Scale 1:100,000, Geological Survey and mineral exploration of Iran, Tehran.
Laznicka, P., 1988. Breccias and coarse fragmentites. Petrology, environments, associations, ores. Elsevier, Amsterdam, 832 pp.
Leach, D. L., Taylor, R. D., Fey, D. L., Diehl, S. F. and Saltus, R. W., 2010. A deposit model for Mississippi Valley-Type lead-zinc ores, chap. A of Mineral deposit models for resource assessment, U.S. Geological Survey, 52 pp. https://doi.org/10.3133/sir20105070a
 
Lecumberri-Sanchez, P., Steel-MacInnis, M. and Bodnar, R.J., 2012. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica et Cosmochimica Acta, 92: 14–22. https://doi.org/10.1016/j.gca.2012.05.044
 
Loftus-Hills, G. and Solomon, M., 1967. Cobalt, nickel and selenium in sulphides as indicators of genesis, Mineralium Deposita, 2: 228–242. https://doi.org/10.1007/bf00201918
 
Malekzadeh Shafaroudi, A. and Karimpour, M.H., 2013. Geology, Mineralization and fluid inclusion studies in Howz-e-Raise lead–zinc-copper deposit, Eastern Iran. Advanced Applied Geology, 2 (4): 63–73. (in Persian with English abstract) Retrieved August 16, 2023 from https://aag.scu.ac.ir/article_11587.html
 
Mehrabi, B. and Tale Fazel, E., 2011. The role of magmatic and meteoric water mixing in mineralization of Shurab polymetal ore deposit South of Ferdows: isotope geochemistry and microthermometry evidences. Iranian Journal of Mineralogy and Crystallography, 19 (1): 121–130. Retrieved August 16, 2023 from https://ijcm.ir/article-1-472-en.pdf
 
Mehrabi, B., Tale Fazel, E. and Yardley, B., 2019. Ore geology, fluid inclusions and O-S stable isotope characteristics of Shurab Sb-polymetallic vein deposit, eastern Iran. Geochemistry, 79 (2): 307–322. https://doi.org/10.1016/j.geoch.2018.12.004 
Parhiz, M., 2008. Exploration license in Kalatepiale prospect area. Geological Survey of Iran, Bojnourd, Report 4, 57 pp.
Prokofiev, V.Y., Garofalo, P.S., Bortnikov, N.S., Kovalenker, V.A., Zorina, L.D., Grichuk, D.V., Selektor, S.L., 2010. Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia, Economic Geology, 105(2): 395–416. https://doi.org/10.2113/gsecongeo.105.2.395
 
Rajabi, A., Rastad, E. and Canet, C., 2012. Metallogeny of Cretaceous carbonate hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration, International Geology Review, 54 (14): 1649–1672. https://doi.org/10.1080/00206814.2012.659110 
 
Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy, United States Geological Survey, United States of America, 644 pp. https://doi.org/10.1515/9781501508271-001 
 
Rollinson, H., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical, Essex, UK, 352 pp.
Shepherd, T, Rankin, A.H. and Alderton, D.H.M., 1985. A prac- tical guide to fluid inclusion studies. Blackie, Glasgow, 239 pp.
Steele-MacInnis, M., Lecumberri-Sanchez, P. and Bodnar, R.J., 2012. HOKIEFLINCS-H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Computers & Geosciences, 49: 334–337. https://doi.org/10.1016/j.cageo.2012.01.022 
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95 (1): 185–187. https://doi.org/10.1016/b978-0-08-095975-7.01109-8
 
Wilkinson, J. J., 2003. On diagenesis, dolomitisation and mineralization in the Irish Zn-Pb Orefield. Mineralium Deposita, 38: 968–983. https://doi.org/10.1007/s00126-003-0387-7
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Elsevier, Lithos, 55 (1-4): 229–272. https://doi.org/10.1016/s0024-4937(00)00047-5       
Wilkinson, J.J., 2014. Sediment-Hosted Zinc–Lead Mineralization: Processes and Perspectives, Treatise on Geochemistry 2nd Edition, 13: 219-249. 
 
 
CAPTCHA Image