تحول سازوکار آتشفشانی در بخش میانی کمان ماگمایی ارومیه-دختر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدیریت مطالعات پایه منابع آب، شرکت آب منطقه‌ای اصفهان، اصفهان، ایران

2 گروه زمین‌شناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان، ایران

چکیده

در این پژوهش پایگاه ژئوشیمی زمین‌مرجع متشکل از 99 آنالیز شیمیایی در طول حدود 200 کیلومتر از بخش میانی کمان ماگمایی ارومیه-‌دختر (از شمال تا شرق اصفهان) مورد کنکاش قرار‌گرفت. این محدوده بین طول­ های جغرافیایی ´15°51 و ´57°52 شرقی و عرض­ های جغرافیایی ´35°32 و ´47°33 شمالی واقع‌شده ­است. این پایگاه داده از بین داده‌های ژئوشیمیایی سنگ کل منتشر‌شده در پهنه مورد بررسی که دو شرط مهم را داشته­ اند، انتخاب شدند. اول اینکه داده ­ها دارای مختصات جغرافیایی صحیح و یا نقشه مختصات­ دار باشند، دوم اینکه آنالیزها توانایی تفکیک سری­ های ماگمایی و تشخیص آداکیت ­ها را داشته­ باشند (عناصر کمیاب Y، Yb، Lu، Sr با دقت مناسب گزارش شده­ اند). این آنالیزها در سه دسته سنی ائوسن، الیگوسن- پلیوسن و پلیو-کواترنر قرار می­ گیرند. یک نمودار جریانی برای شناسایی سری ماگمایی نمونه ­ها طراحی‌شد و کلیه داده­ ها به‌صورت نظام­ مند بر مبنای آن مورد تحلیل قرار گرفتند. نتایج نشان می­ دهد که ماهیت ماگماتیسم فاز اول اغلب کالک‌آلکالن، فاز دوم معمولاً شوشونیتی و فاز سوم اغلب آداکیتی بوده­ است. با استفاده از نمودارهای تعیین درصد ذوب‌بخشی سنگ­های ماگمایی مشخص­شد که نمونه ­های کالک‌آلکالن از ذوب‌بخشی حدود 15 درصد گوه گوشته­ ای اسپینل-گارنت لرزولیت به‌دست آمده‌اند. برآورد می ­شود که نمونه­ های شوشونیتی از ذوب‌بخشی حدود 3 درصد گوه گوشته ­ای با ترکیب اسپینل-‌گارنت لرزولیت حاصل شده­ اند. آداکیت­ ها حاصل ذوب پوسته اقیانوسی فرورانده‌شده هستند و بر اساس درصد ذوب‌بخشی منشأ به دو دسته قابل تفکیک ­اند. دسته اول، نمونه ­های منطقه کجان و کهنگ که از ذوب‌بخشی حدود 10 درصد گارنت آمفیبولیت حاصل شده ­اند و دسته دوم، نمونه­ های منطقه جوشقان- قهرود که نزدیکی بیشتری با سنگ منشأ هورنبلند اکلوژیت دارند، ذوب‌بخشی حدود 6 درصد نشان می ­دهند.
البته باید توجه داشت این تفاسیر برمبنای داده‌های موجود است و در آینده با در دست‌ داشتن داده‌های صحیح مختصات‌دار بیشتر، این پایگاه داده می‌تواند کامل ­تر شده و ارزیابی دقیق­ تری از تحولات ژئوشیمی سنگ ­های آتشفشانی منطقه ارائه نماید.

کلیدواژه‌ها


Aftabi, A. and Atapour, H., 2000. Regional aspects of shoshonitic volcanism in Iran. Episodes, 23(2): 119–125. Retrieved June 11, 2021 from https://www.researchgate.net/publication/279896057_Regional_aspects_of_shoshonitic_volcanism_in_Iran
Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(3): 401–419. https://doi.org/10.1016/s1631-0713(02)01717-0
Ahmadvand, A., 2009. Geochemistry and petrology of the basic volcanic rocks from southwest Shahrab (Ardestan). M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 69 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://parseh.modares.ac.ir/thesis/2031658
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2): 67–95. https://doi.org/10.1016/s0377-0273(00)00182-7
Allen, M., Jackson, J. and Walker, R., 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23(2): 1–16. https://doi.org/10.1029/2003tc001530
Amidi, S.M., 1977. Etude géologique de la région de Natanz-Surk (Iran, Central). Ph.D. thesis, University of Grénoble, France, 316 pp.
Amidi, S.M., Emami, M.H. and Michel, R., 1984. Alkaline character of Eocene volcanism in the middle part of Central Iran and its geodynamic situation. Geologische Rundschau, 73(3): 917–932. https://doi.org/10.1007/bf01820882
Amoozad-khalili, D., 2009. Geochemistry and petrology of the intermediate-felsic volcanic rocks from southwest Shahrab (Ardestan). M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 59 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://parseh.modares.ac.ir/thesis.php?id=2031736&sid=1&slc_lang=en
Asadi, H.H., Heydari, E., Fathianpour, N. and Atar, D., 2009. Detailed Exploration at Central Kahang Copper Deposit. Isfahan Province Industry Mine and Trade Organization, Isfahan, 195 pp.
Bailey, J.C., Frolova, T.I. and Burikova, I.A., 1989. Mineralogy, geochemistry and petrogenesis of Kurile island-arc basalts. Contributions to Mineralogy and Petrology, 102(3): 265–280. https://doi.org/10.1007/bf00373720
Bourdon, E., Eissen, J.P., Gutscher, M.A., Monzier, M., Samaniego, P., Robin, C., Bollinger, C. and Cotton, J., 2002. Slab melting and slab melt metasomatism in the Northern Andean Volcanic Zone: adakites and high-Mg andesites from Pichincha volcano (Ecuador). Bulletin de la Société Géologique de France, 173(2): 195–206. https://doi.org/10.2113/173.3.195
Condie, K.C., 2005. TTGs and adakites: are they both slab melts? Lithos, 80(1–4): 33–44. https://doi.org/10.1016/j.lithos.2003.11.001
Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347 (6294): 662–665. https://doi.org/10.1038/347662a0
Defant, M.J. and Kepezhinskas, P., 2001. Evidence suggests slab melting in arc magmas. EOS, 82(6): 65–69. https://doi.org/10.1029/01eo00038
Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Saroglu, F. and Sengo, A.M.C., 1986. Shortening of continental lithosphere: The neotectonics of Eastern Anatolia - a young collision zone. In: M.P. Coward and A.C. Ries (Editors), Collision Zone Tectonics. Geological Society of London Special Publication, London, pp. 3–36.  https://doi.org/10.1144/gsl.sp.1986.019.01.01
Dilek, Y., Imamverdiyev, N. and Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52(4–6): 536–578. https://doi.org/10.1080/00206810903360422 
Dilek, Y. and Sandvol, E., 2009. Seismic Structure, Crustal Architecture and Tectonic Evolution of the Anatolian-African Plate Boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region. Geological Society of London Special Publication, 327(1): 127–160. https://doi.org/10.1144/sp327.8 
Drummond, M.S. and Defant, M.J., 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. Journal of Geophysical Research, 95(B13): 21503–21521. https://doi.org/10.1029/jb095ib13p21503
Fardfeshani, Z., 2011. The Origin and evolution of felsic Tertiary volcanism west of Nain. M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 69 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://parseh.modares.ac.ir/thesis/2032119
Ghadami, G., Moradian, A. and Mortazavi, M., 2008. Post-collisional Plio–Pleistocene adakitic volcanism in Central Iranian volcanic belt: geochemical and geodynamicimplications. Journal of Sciences, Islamic Republic of Iran, 19(3): 223–235. Retrieved June 11, 2021 from https://journals.ut.ac.ir/pdf_31896_3d5550b30b2590c75543469f305410a2.html
Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj-Sirjan zone (Iran). Journal of Asian Earth Sciences, 26(6): 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003
Hassanzadeh, J., 1993. Metallogenic and tectonomagmatic events in the SE sector of Cenozoic active continental margin of Central Iran (Sharebabak area), Kerman province. Ph.D. Thesis, University of California, Los Angeles, USA, 204 pp. Retrieved June 11, 2021 from https://www.worldcat.org/title/metallogenic-and-tectonomagmatic-events-in-the-se-sector-of-the-cenozoic-active-continental-margin-of-central-iran-shahr-e-babak-area-kerman-province/oclc/29813932
Hesse, M. and Grove, T.L., 2003. Absarokites from the western Mexican Volcanic Belt: constraints on mantle wedge conditions. Contributions to Mineralogy and Petrology, 146(1): 10–27. https://doi.org/10.1007/s00410-003-0489-3
Iddings, J.P., 1895. Absarokite-shoshonite-banakite series. The Journal of Geology, 3(8): 935–959. https://doi.org/10.1086/607398
Irvine, T.N. and Barager, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055
Jabbari, A., 2014. Petrology of volcanic and sub-volcanic rocks in Zefreh-Kashan axis. Ph.D. Thesis, Shahid Beheshti University, Tehran, Iran, 182 pp. (in Persian with English abstract)  Retrieved June 11, 2021 from https://centlibrary.sbu.ac.ir/faces/search/bibliographic/biblioFullView.jspx?_afPfm=kcv4wkm2w
Jackson, J. and McKenzie, D., 1984. Active tectonics of the Alpine-Himalayan belt between western Turkey and Pakistan. Geophysical Journal International, 77(1): 185–264. https://doi.org/10.1111/j.1365-246x.1984.tb01931.x
Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30(3–4): 433–447. https://doi.org/10.1016/j.jseaes.2006.11.008
Kay, R.W., 1978. Aleutian magnesian andesites: melts from subducted Pacific ocean crust. Journal of Volcanology and Geothermal Research, 4(1–2): 117–132. https://doi.org/10.1016/0377-0273(78)90032-x
Kay, S.M., Mpodozis, C. and Coira, A.B., 1999. Neogene magmatism, tectonism, and mineral deposits of the central Andes (22° to 33° S latitude). In: B.J. Skinner (Editor), Geology and Ore Deposits of the Central Andes. Society of Economic Geologists, Special Publication 7, Littleton, pp. 27–59. https://doi.org/10.5382/sp.07.02
Kennedy, G.C., 1955. Some aspects of the role of water in the rock melts. In: A. Poldervaart (Editor), Crust of the Earth: A symposium. Geological Society of America, Special Publication 62, Boulder, pp. 489–503.  https://doi.org/10.1130/spe62-p489
Khodami, M., 2009. Petrology of Plio-Quaternary volcanic rocks in south-east and north-west of Isfahan. Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 174 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://lib.ui.ac.ir/dL/search/default.aspx?Term=6027&Field=0&DTC=3
Kinzler, R.J., 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research, 102(B1): 853–874. https://doi.org/10.1029/96jb00988
Le Maitre, R.W., Streckeisen, A., Zanettin, B. and Le Bas, M.J., 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Sub-Commission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, UK, 236 pp.  https://doi.org/10.1017/cbo9780511535581
Martin, H., 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753–756. https://doi.org/10.1130/0091-7613(1986)14<753:eosagg>2.0.co;2
Martin, H.,1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3): 411–429. https://doi.org/10.1016/s0024-4937(98)00076-0  
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1–2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048 
Maury, R.C., Sajona, F., Pubellier, M., Bellon, H. and Defant, M., 1996. Fusion de la croute oceanique dans las zones de subdction/collision recentes: l, example de Mindanao (Philippines). Bulletin de la Societe Geologique de France, 167(5): 579–595.  Retrieved June 11, 2021 from https://pubs.geoscienceworld.org/sgf/bsgf/article-abstract/167/5/579/122854/Fusion-de-la-croute-oceanique-dans-les-zones-de?redirectedFrom=fulltext  
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, G., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Ndariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M.N. and Veis, G., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105(B3): 5695–5719. https://doi.org/10.1029/1996jb900351
McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D. and Tealeb, A., 2003. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International, 155(1): 126–138. https://doi.org/10.1046/j.1365-246x.2003.02023.x
McKenzie, D.P. and O'Nions, R.K., 1991. Partial melt distribution from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021–1091. https://doi.org/10.1093/petrology/32.5.1021
McKenzie, D.P. and O'Nions, R.K., 1995. The source regions of Ocean Island Basalts. Journal of Petrology, 36(1): 133–159. https://doi.org/10.1093/petrology/36.1.133
Meen, J.K., 1987. Formation of shoshonites from calc-alkaline basalt magmas: geochemical and experimental constraints from the type locality. Contributions to Mineralogy and Petrology, 97(3): 333–351. https://doi.org/10.1007/bf00371997
Moradizadeh, N., 2012. Study of volcanic rocks of Barzrood (NE of Isfahan) with emphasis on ore deposit. M.Sc. Thesis, University of Isfahan, Isfahan, Iran, 100 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://lib.ui.ac.ir/dL/search/default.aspx?Term=9557&Field=0&DTC=3
Movahedian Atar, F., 2008. Petrology and Geology of Tertiary Volcanic Rocks from North Kuhpaye (NE of Esfahan). M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 102 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://parseh.modares.ac.ir/thesis/2031676
Moyen, J.F. and Martin, H., 2012. Forty years of TTG research. Lithos, 148(1): 312–336. https://doi.org/10.1016/j.lithos.2012.06.010
Müller, D., Rock, N.M.S. and Groves, D.I., 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. Mineralogy and Petrology, 46(4): 259–289. https://doi.org/10.1007/bf01173568
Omrani, J., Agard, P., Witechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008. Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106(3–4): 380–398. https://doi.org/10.1016/j.lithos.2008.09.008
Osborn, E., 1959. Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Journal of Science, 257(9): 609–647. https://doi.org/10.2475/ajs.257.9.609
Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: R.S. Thorpe (Editor), Andesites. Wiley, New York, pp. 525–548. Retrieved June 11, 2021 from https://www.researchgate.net/publication/304749002_Trace_Element_Characteristics_of_Lavas_from_Destructive_Plate_Boundaries
Pearce, J.A., 1983. Role of sub-continental lithosphere in magma genesis at active Continental margins. In: C.J. Hawkesworth and M.J. Norry (Editors), Continental Basalts and Mantle Xenoliths. Shiva, Nantwich, pp. 230–249.  Retrieved June 11, 2021 from https://www.researchgate.net/publication/247434731_Role_of_the_sub-continental_lithosphere_in_magma_genesis_at_active_continental_margin
Sayari, M., 2015. Petrogenesis and evolution of Oligocene-Pliocene volcanism in the central part of Urumieh-Dokhtar Magmatic Arc (NE of Isfahan). Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 195 pp. (in Persian with English abstract) Retrieved June 11, 2021 from https://lib.ui.ac.ir/dl/search/default.aspx?Term=12518&Field=0&dtc=3
Sayari, M., Sharifi, M., 2016, Application of clinopyroxene chemistry to interpret the physical conditions of ascending magma, a case study of Eocene volcanic rocks in the Ghohrud area (North of Isfahan). Journal of Economic Geology, 8(1): 61–78. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V8I1.38857
Sayari, M., Sharifi, M., 2018. Anomalies in the depth of the asthenospheric mantle: key to the enigma of adakites in the Urumieh-Dokhtar magmatic arc. Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 195(3): 227–245. https://doi.org/10.1127/njma/2018/0093
Sayari, M., Sharifi, M., Ahmadian, J., 2014. Determining magmatic series and oxygen fugacity of volcanic rocks in the east of Kamu, north of Isfahan, based on biotite chemistry. Journal of Economic Geology, 6(1): 149–161. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V6I1.21362
Saunders, A.D., Tarney, J. and Weaver, S.D., 1980. Transverse geochemical variations across the Antarctic peninsula: implications for the genesis of calc-alkaline magmas. Earth and Planetary Science Letters, 46(3): 344–360. https://doi.org/10.1016/0012-821x(80)90050-3
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors.), magmatism in ocean basins. Geological Society of London Publications, Special Publication 42, London, pp. 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
Sisson, T.W. and Grove, T.L., 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113(2): 143–166. https://doi.org/10.1007/bf00283225
Stern, C.R. and Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263–281. https://doi.org/10.1007/s004100050155
Tamizi, N., 2013. Petrography of volcanic rocks in the north of Aliabad mining area (NW of Nain) with emphasis on recent perlite and bentonite exploration works. M.Sc. Thesis, University of Isfahan, Isfahan, Iran, 95 pp. (in Persian with English abstract)
Taylor, W.R., Rock, N.M.S., Groves, D.I., Perring, C.S. and Golding, S.D., 1994. Geochemistry of Archean shoshonitic lamprophyres from the Yilgarn block, Western Australia: Au abundance and association with gold mineralization. Applied Geochemistry, 9(2): 197–222. https://doi.org/10.1016/0883-2927(94)90007-8
Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1): 29–60. https://doi.org/10.1093/petroj/39.1.29
Wang, Q., McDermott, F., Xu, J.F., Bellon, H. and Zhu, Y.T., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology, 33(6): 465–468. https://doi.org/10.1130/g21522.1
Wang, Q., Wyman, D.A., Xu, J.F., Jian, P., Zhao, Z.H., Li, C.F., Xu, W., Ma, J.L. and He, B., 2007. Early Cretaceous adakitic granites in the Northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609–2636. https://doi.org/10.1016/j.gca.2007.03.008
Wang, Q., Wyman, D.A., Xu, J.F., Wan, Y., Li, C.H., Zi, F., Jiang, Z., Qiu, H., Chu, Zh., Zhao, Z.H. and Dong, Y.H., 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155(4): 473–490. https://doi.org/10.1007/s00410-007-0253-1
Yogodzinski, G.M., Kay, R.W., Volynets, O.N., Koloskov, A.V. and Kay, S.M., 1995. Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin, 107(5): 505–519. https://doi.org/10.1130/0016-7606(1995)107<0505:maitwa>2.3.co;2
CAPTCHA Image