مطالعه کانی سازی و تحول سیال کانی ساز در کانسار فلوریت- باریت (± سولفید) آتش‌ کوه، جنوب دلیجان

نوع مقاله : علمی- پژوهشی

نویسندگان

1 پیام نور

2 بوعلی سینا

چکیده

کانسار فلوریت- باریت (± سولفید) آتش کوه در جنوب شهرستان دلیجان، حدود 80 کیلومتری جنوب‌شرقی اراک واقع شده‌ است. کانی سازی به‌شکل رگه ای با ماهیت دیرزاد، در سنگهای ‌میزبان کربناتی و شیلی سازند شمشک و بادامو به سن ژوراسیک زیرین تا بالایی روی داده است. فلوریت و باریت فراوانترین کانیهای سازنده کانسنگ هستند و کانیهای فرعی شامل کوارتز، کلسیت، دولومیت، گالن و کالکوپیریت هستند. شواهد به‌دست آمده از بررسیهای میکروترمومتری نشان می‌دهد، رگه‌های فلوریت- باریت (± سولفید) آتش‌کوه در نتیجه اختلاط اعضای انتهایی یک شورابه Na–K(–Mg–Ca) اولیه و شورابه‌های سازندی غنی از کلسیم با شوری کمتر، ناشی از تبادلات سیال- سنگ بعدی شکل گرفته است. چهار مرحله کانی‌سازی در منطقه آتش‌کوه قابل تشخیص است: 1- تحرک شورابه‌های حوضه‌ای غنی از Na–K از افقهای زیرین؛ 2- اختلاط و رقیق‌شدگی شورابه غنی از نمک با سیالات سازندی با شوری کمتر و تشکیل کانی‌سازی فلوریت- باریت؛ 3- رخ‌داد کربن‌زدایی و افزایش میزان CO2 در محیط و 4- تشکیل بافتهای حفره‌ای و برشی، ناشی از انحلال سنگهای کربناتی.

کلیدواژه‌ها


Alavi, M., 1991. Tectonic map of the Middle East, scale 1:5,000,000. Geological Survey of Iran.
Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1-3): 3-23.
Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210-265.
Bodnar, R.J., Sterner, S.M. and Hall, D.L., 1989. SALTY: A FORTRAN program to calculate compositions of fluid inclusions in the system NaCl-KCl-H2O. Computer Geoscience, 15(1): 19-41.
Boiron, M.C., Cathelineau, M. and Richard, A., 2010. Fluid flows and metal deposition near basement/cover unconformity: lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluids, 10(3): 270-292.
Bowers, T.S. and Helgeson, H.C., 1985. FORTRAN programs for generating fluid inclusion isochores and fugacity coefficients for the system H2O–CO2–NaCl at high pressures and temperatures. Computer Geoscience, 11(2): 203-213.
Brown, P.E., 1989. FLINCOR: a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74(11-12): 1390-1393.
Burruss, R.C., 1981. Analysis of phase equilibria in C–O–H–S fluid inclusions. Mineralogical Association of Canada Short Course, 6(3): 39-74.
Cann, J.R. and Banks, D.A., 2001. Constraints on the genesis of the mineralization of the Alston Block, Northern Pennine Orefield, northern England. Proceedings of the Yorkshire Geology Society, 53(3): 187-196.
Crerar, D.A. and Anderson, G.M., 1971. Solubility and solvation reactions of quartz in dilute hydrothermal solutions. Chemical Geology, 8(2): 107-22.
Dill, H.G., 2010. The chessboard classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth-Science Reviews, 100(1): 1-420.
Ehya, F., 2012. Variation of mineralizing fluids and fractionation of REE during the emplacement of the vein-type fluorite deposit at Bozijan, Markazi Province, Iran. Journal of Geochemical Exploration, 112(1): 93–106.
Genç, Y., 2006. Genesis of the Neogene interstratal karst-type Pöhrenk fluorite–barite (±lead) deposit (Kırşehir, Central Anatolia, Turkey). Ore Geology Reviews, 29(2): 105-117.
Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6): 683-693.
Gheshlaghi, A. and Moore, F., 2007. Recognition of Pinavand fluorite mines occurrence based on geothermometry and REE data. Iranian Journal of Crystallography and Mineralogy, 14(2): 325-338 (in Persian with English abstract).
Ghorbani, M., 2013. The economic geology of Iran, mineral deposits and natural resources. Springer Netherlands, 569 pp.
Goldstein, R.H. and Reynolds, T.J., 1994. Systematics of fluid inclusions in diagenetic materials. Society for Sedimentary Geology. Society of Economic Paleontologists and Mineralogists, Short Course 31, 199 pp.
Hall, D.L., Sternert, S.M. and Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O. Economic Geology, 83(1): 197-202.
Hannah, J.L. and Stein, H.J., 1990. Magmatic and hydrothermal processes in ore bearing systems. Geological Society of America Special Paper, 246(7): 1-9.
Lohmann, K.C., 1988. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: N.P. James and P.W. Choquette (Editors), Paleokarst. Springer-Verlag, Berlin, pp. 58-80.
Lüders, V., Reutel, C., Hoth, P., Banks, D., Mingram, B. and Pettke, T., 2005. Fluid and gas migration in the North German Basin: fluid inclusion and stable isotope constraints. International Journal of Earth Science, 94(5-6): 990-1009.
McLemore, V.T., Giordano, T.H., Lueth, V.W. and James, C.W.J., 1998. Origin of barite-fluorite-galena deposit in the Rio Grande Rift, New Mexico. 49th Field Conference Guidebook, New Mexico, USA.
Naden, J., 1996. CalcicBrine: A Microsoft Excel 5.0 Add-in for Calculating Salinities from Microthermometric Data in the System NaCl–CaCl2–H2O. 6th PACROFI Symposium, Madison, USA.
Pique, A., Canals, A., Grandia, F. and Banks, D.A., 2008. Mesozoic fluorite in NE Spain record regional base metal-rich brine circulation through basin and basements during extensional events. Chemical Geology, 257(1-2): 139-152.
Pirouzi, M., Ghaderi, M., Rashidnejad-Omran, N. and Rastad, M., 2009. New evidences on mineralization, diagenesis and fluid inclusions at Kamar-Mehdi stratabound fluorite deposit, southwest Tabas. Iranian Journal of Crystallography and Mineralogy, 17(1): 83-94 (in Persian with English abstract).
Rachidnejad-Omran, N., Emami, M.H., Sabzehei, M., Rastad, E., Bellon, H. and Pique, A., 2002. Lithostratigraphie et histoire paleozoïque à paleocène des complexes metamorphiques de la region de Muteh, zone de Sanandaj-Sirjan (Iran meridional). Comptes Rendus Geoscience, 334(2): 1185-1191.
Roedder, E., 1984. Fluid inclusions. Review in Mineralogy, Mineralogical Society of America, Washington, D.C., 646 pp.
Sanchez, V., Cardellach, E., Corbella, M., Vindel E., Martin-Crespo, T. and Boyce, A.J., 2010. Variability in fluid sources in the fluorite deposits from Asturias (N Spain): further evidences from REE, radiogenic (Sr, Sm, Nd) and stable (S, C, O) isotope data. Ore Geology Reviews, 37(2): 87-100.
Sanchez, V., Vindel, E., Martin-Crespo, M., Corbella, M., Cardellach, E. and Banks, D.A., 2009. Sources and composition of fluids associated with fluorite deposits of Asturias (N Spain). Geofluids, 9(4): 338-355.
Sheikhol-Eslami, M.R., 2005. Geological map of the Mahallat quadrangle, scale 1:100,000. Geological Survey of Iran.
Sterner, S.M., Hall, D.L. and Bodnar, R.J., 1988. Synthetic fluid inclusions V: solubility relations in the system NaCl-KCl-H2O under vaporsaturated conditions. Geochemica et Cosmochemica Acta, 52(5): 989-1005.
Thiele, O., Alavi, M., Assefi, R., Hushmand-zadeh, A., Seyed-Emami, K. and Zahedi, M., 1968a. Geological map of the Golpaygan quadrangle, scale 1:250,000. Geological Survey of Iran.
Thiele, O., Alavi, M., Assefi, R., Hushmand-zadeh, A., Seyed-Emami, K. and Zahedi, M., 1968b. Explanatory text of the Golpaygan quadrangle map, scale 1:250,000. Geological Survey of Iran. Geological quadrangle E7, 24 pp.
Tornos, F., Casquet, C., Locutura, J. and Collado, R., 1991. Fluid inclusions and geochemical evidence for fluid mixing in the genesis of Ba–F (Pb–Zn) lodes of the Spanish Central System. Mineralogical Magazine, 55(2): 225-34.
Vahabzadeh, G., Khakzad, A., Rasa I. and Mousavi, M.R., 2008. The study of sulfur isotopes of galena and barite in fluorite ore deposits of Savad Kouh region. Journal of Sciences (Islamic Azad University), 18(69): 99-108 (in Persian with English abstract).
Van den Kerkhof, A.M. and Hein, U.F., 2001. Fluid inclusion petrography. Lithos, 55(1-4): 27-47.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229-272.
CAPTCHA Image