نقش پهنه های برشی راستالغز و شکستگی های مرتبط با چین خوردگی در تکوین کانسار طلای زرشوران، همتافت تخت سلیمان، شمال تکاب

نوع مقاله : علمی- پژوهشی

نویسندگان

دانشگاه بوعلی سینا

چکیده

کانسار طلای زرشوران در همتافت تکاب در شمال ­باختر ایران و در یال باختری طاقدیس ایمان­ خان با راستای شمال‌باختری-‌جنوب‌خاوری واقع‌شده است. واحدهای شیل سیاه زرشوران و آهک چالداغ با سن پرکامبرین مهم ­ترین میزبان­ های کانی‌سازی در منطقه هستند که دگرسانی­ های سیلیسی (ژاسپروئیدی)، کربنات ­زدایی، دولومیتی و آرژیلیک، کانه ­زایی را همراهی می­ کنند. استخراج خط‌ واره‌ها و تحلیل‌های فرکتالی شکستگی‌ها و خط‌ واره‌ها نشان می ­دهد که غلظت طلا در مناطق با تراکم بالای شکستگی، مقادیر متغیری (کمینه 5 تا بیشینه 10 میلی‌گرم در تن) دارد. بیشترین فراوانی روند خط‌ واره‌ها و گسل­ های منطقه مورد بررسی به ­ترتیب N20E  تا N75E درجه و بیشترین فراوانی روند گسل‌ها N30E  تا N85E درجه است. گسل تکاب با راستای شمال­ باختری-‌جنوب­ خاوری مه م­ترین ساختار در منطقه است که عملکرد راستالغز جوان آن باعث ایجاد ساختارهای کششی و فشارشی شده است. طاقدیس ایمان‌خان یکی از این ساختارهاست که شکستگی‌های آن محلی مناسب برای اختلاط سیالات جوی و گرمابی حاوی فلز و ته‌نشینی طلا را فراهم‌کرده است. کانی‌سازی در این طاقدیس بیشتر در محل تقاطع شکستگی‌ها و در راستای شکستگی‌های طولی با روند شمال‌باختر-‌جنوب‌خاور و ناشی از تحدب کمان خارجی طاقدیس صورت‌گرفته است.

کلیدواژه‌ها


Adib, A., Mirzaei, S.I., Shoaei, G. and Afzal, P., 2017. Determination of a Conceptual Model for the Structural Features and Pb-Zn Mineralization in the North of Behabad Fault Zone, Central Iran. Iranian Journal of Earth Sciences, 9‌(2): 168–183.
Afzal, P., Dadashzadeh, A.H., Rashidnejad, O.N. and Aliyari, F., 2013. Delineation of gold mineralized zones using concentration-volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews, 55(6): 125–133.
Afzal, P., Fadakar, Y.A., Moarefvand, P., Rashidnejad, O.N. and Asadi, H.H., 2012. Application of power-spectrum-volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. Journal of Geochemical Exploration, 112(1): 131–138.
Alavi, M., 2004. Regional stratigraphy of the Zagros Fold-Thrust belt of Iran and its proforelenad evolution. American Journal of Science, 304(1): 1–20.
Alavi, M. and Amini, M., 1976. Geological Quadrangle map of Iran, 1:250,000 scale, sheet C4 (Takab), Geological Survey of Iran.
Alipoor, R., Zare, M. and Ghassemi, M.R., 2012. Inception of activity and slip rate on the Main Recent Fault of Zagros Mountains, Iran. Geomorphology, 175–176(22): 86–97.
Allen, M.B., Kheirkhah, M., Emami, M.H. and Stuart, J.J., 2011. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone. Geophysical Journal International, 184(2): 555–574.
Arthur, M.A. and Sageman, B.B., 1994. Marine black shales: Depositional mechanisms and environments of ancient deposits. Annual Reviews of Earth and Planetary Sciences, 22(1): 499–551.
Asadi, H.H., Voncken, J.H.L., Kühnel, R.A. and Hale, M., 2000. Petrography, mineralogy and geochemistry of the Zarshuran Carlin-like gold deposit, northwest Iran. Mineralium Deposita, 35(7): 656–671.
Awdal, A.H., Braathen, A., Wennberg, O.P. and Sherwani, G.H., 2013. The characteristics of fracture networks in the Shiranish formation of the Bina Bawi Anticline; comparison with the Taq Taq field, zagros, Kurdistan, NE Iraq. Petroleum Geoscience, 19(2): 139–155.
Babakhani, A and Ghalamghash, J., 1998. Geological map of Takht-e-Soleyman, scale 1:100,000. Geological Survey of Iran.
Barbier, M., Hamon, Y., Callot, J., Floquet, M. and Daniel, J., 2012. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA). Marine and Petroleum Geology, 29(1): 50–67.
Bazdar, H., Fattahi, H. and Ghadimi, F., 2015. Hybrid ANN with Invasive Weed Optimization Algorithm, a New Technique for Prediction of Gold and Silver in Zarshuran Gold Deposit, Iran. Journal of Tethys, 3‌)3(: 273–286.
Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18‌(2): 210–265.
Biralvand, M., Mohajjel, M. and Ghassemi, R., 2017. Thick-skinned dextral transpression in Takab complex, NW Iran. Scientific Quarterly Journal, GEOSCIENCES, 26‌(102): 27–38. (in Persian with English abstract)
Carranza, E.J.M., 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35(3–4): 383–400.
Carranza, E.J.M., Wibowo, H., Barritt, S.D. and Sumintadireja, P., 2008. Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia. Geothermics, 37(3): 267–299.
Carlson, C.A., 1991. Spatial distribution of ore deposits. Geology, 19(2): 111–114.
Cheng, Q. and Agterberg, F.P., 1995. Multifractal modeling and spatial point processes. Mathematical Geology, 27(7): 831–845.
Cheng, Q., Agterberg, F.P., Bonham-Carter, G.F., 1996. Fractal pattern integration for mineral potential estimation. Nonrenewable Resource, 5(2): 117–130.
Cline, J.S., Hofstra, A.H., Muntean, J.L., Tosdal, R.M. and Hickey, K.A., 2005. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Editors), Economic Geology 100th anniversary volume. Society of Economic Geologist, Littleton, CO, pp. 451–484.
Corbett, K., Friedman, M. and Spang, J., 1987. Fracture development and mechanical stratigraphy of Austin Chalk, Texas. American Association of Petroleum Geologists Bulletin, 71‌(1): 17–28.
Cox, S.F., 1999. Deformational controls on the dynamics of fluid flow in mesothermal gold systems. In: K.J.W., McCaffey, L. Lonergan and J.J. Wilkinson, (Editors), Fractures, fluid flow and mineralization. Geological Society of London Publications, Special Publications 155, London, pp. 123–140.
Crocket, J.H., 1991. Distribution of gold in the Earth’s crust. In: R.P. Foster (Editor), Gold metallogeny and exploration. Springer, Boston, pp. 1–36.
Daliran, F., 2008. The carbonate rock-hosted epithermal gold deposit of Agdarreh, Takab geothermal field, NW Iran hydrothermal alteration and mineralization. Mineralium Deposita, 43(4): 383–404.
Faccenna, C., Be llier, O., Mar tinod, J., Piromallo, C. and Regard, V., 2006. Slab detachment beneath eastern Anatolia: a possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters, 242(1): 85–97.
Ferrill, D.A. and Morris, A.P., 2008. Fault zone deformation controlled by carbonate mechanical stratigraphy Balcones fault system, Texas. American Association of Petroleum Geologists Bulletin, 92(3): 359–380.
Fossen, H, 2010. Structural geology. Cambridge University Press, New York, 481 pp.
Ghorbani, M., 2000. Magmatism and metalogeny of Taka area. Ph.D. Thesis, Shahid Beheshti University, Tehran, Iran, pp. 224. (in Persian with English abstract)
Hafkenscheid, E., Wortel, M. and Spakman, W., 2006. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. Journal of Geophysical Research, 111(8): 1–24.
Hajialioghli, R. and Moazzen, M., 2013. Precambrian crustal basement rocks in Iran new evidence from the Takht-e-Soleyman metamorphic complex from NW Takab. Scientific Quarterly Journal, GEOSCIENCES, 22(88): 197–204. (in Persian with English abstract)
Hajialioghli, R., Moazzen, M., Droop, G.T.R., Oberhänsli, R., Bousquet, R., Jahangiri, A. and Ziemann, M., 2007. Serpentine polymorphs and P-T evolution of metaperidotites and serpentinites in the Takab area, NW Iran. Mineralogical Magazine, 71(2): 203–222.
Hanks, C.L., Lorenz, J., Teufel, L. and Krumhardt, A.P., 1997. Lithologic and structural controls on natural fracture distribution and behavior within Lisburne Group, Northeastern Brooks Range and North Slope Subsurface, Alaska. American Association of Petroleum Geologists Bulletin, 81(10): 1700–1720.
Hashim, M., Ahmad, S., Md Johari, M.A. and Beiravand Pour, A., 2013. Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery. Advances in Space Research, 51(5): 874–890.
Hobbs, D.W., 1967. The formation of tension joints in sedimentary rocks: an explanation. Geological Magazine, 104(6): 550–556.
Hofstra, A., Emsbo, P., Christiansen, W., Theodorakos, P., Zhang, X.C., Hu, R.Z., Su, W.C. and Fu, S.H., 2005. Source of ore fluids in Carlin-type gold deposits, China: Implications for genetic models. In: J. Mao and F.P. Bierlein (Editors), Mineral Deposit Research: Meeting the Global Challenge. Springer, Berlin, pp. 533–536.
Hosseinjani Zadeh, M. and Honarmand, M., 2018. Remote sensing and Aeromagnetic investigations in porphyry copper deposits for identification of areas with high concentration of gold: a case study from the central part of Dehaj-Sarduiyeh belt, Kerman, Iran. Journal of Economic Geology, 10)1 :(237–254. (in Persian with English abstract)
Hugman, R.H.H. and Friedman, M., 1979. Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks. American Association of Petroleum Geologists Bulletin, 63‌(9): 1478–1489.
Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30‌(3): 433–447.
Jamison, W.R., 1997. Quantitative evaluation of fractures on Monkshood anticline, a detachment fold in the Foothills of Western Canada. American Association of Petroleum Geologists Bulletin, 81‌(7): 1110–1132.
Kashkoei Jahroomi, M. and Qishlaqi, A., 2016. A new approach for hydrothermal alteration mapping by selecting and interpreting principal components in Landsat ETM+ images. Journal of Economic Geology, 8(1): 181–199. (in Persian with English abstract)
Kavoshgaran Consulting Engineers Co., 2013. Prospecting and preliminary exploration in near zarshuran gold mine. Ministry of Mines and Metals, Republic Islamic of Iran (unpublished), 500 pp. (in Persian)
Keskin, M., 2003. Magma generation by slab steepening and break off beneath a subduction accretion complex: an alternative model for collision related volcanism in eastern Anatolia, Turkey. Geophysical Research Letters, 30(24): 1–9.
Kesler, S.E., Riciputi, L.C. and Ye, Z., 2005. Evidence for a magmatic origin for Carlin-type gold deposits: isotopic composition of sulfur in the Betze-Post-Screamer Deposit, Nevada, USA. Mineralium Deposita, 40(2): 127–136.
Ketris, M.P. and Yudovitch, Y.E., 2009. Estimations of Clarkes for Carbonaceous bioliths: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2): 135–148.
Koike, K., Nagano, S. and Kawaba, K., 1998. Constraction and analysis of interpreted fracture plans through combination of satellite image derived lineaments and digital elevation model date. Computers & Geosciences, 24(1): 573–583.
Large, R.R., Bull, S.W. and Maslennikov, V.V., 2011. A carbonaceous sedimentary source rock model for Carlin-type and orogenic gold deposits. Economic Geology, 106(3): 331–358.
Madrid, R.J. and Garwin, S.L., 2002. Structural methods for targeting gold deposits, northern Carlin trend, Nevada. In: C.P. Swager, B. Stone and S. Reddy (Editors), Applied Structural Geology for Mineral Exploration and Mining. Australian Institute of Geoscientists, Kalgoolie, pp. 118–121.
Mandelbort, B.B., 1982. The Fractal Geometry of Nature. Freeman, New York, 460 pp.
Masoud, A. and Koike, K., 2006. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. Journal of African Earth Sciences, 45(4-5): 467–477.
McLellan, J.G., 2004. Fluid flow in extensional environments; numerical modelling with an application to Hamersley iron ores. Journal of Structural Geology, 26(6–7): 1157–1171.
Mehrabi, B., Yardley, B.W.D. and Cann, J.R., 1999. Sediment-hosted disseminated gold mineralization at Zarshuran, NW Iran. Mineralium Deposita, 34(7): 673–696.
Mirzaie, A., Shafiei, B.S. and Derakhshani, R., 2015. Fault control on Cu mineralization in the Kerman porphyry copper belt, SE Iran: A fractal analysis. Ore Geology Reviews, 71(11): 237–247.
Muntean, J.L., Cline, J.S., Simon, A.C. and Longo, A.A., 2011. Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits. Nature Geoscience, 4(2): 122–127.
Muto, J., Nakatani, T., Nishikawa, O. and Nagahama, H., 2015. Fractal particle size distribution of pulverized fault rocks as a function of distance from the fault core. Geophysical Research Letters, 42(10): 3811–3819.
Nadimi, A., 2007. Evolution of the Central Iranian basement. Gondwana Research, 12(3): 324–323.
Nouri, R., Afzal, P., Arian, M., Jafari, M. and Feizi, F., 2013. Reconnaissance of copper and gold mineralization using analytical hierarchy process (AHP) in the Rudbar 1:100,000 map sheet, northwest Iran. Journal of Mining and Metallurgy, Section A: Mining, 49(1): 9–19.
Ojaghi, B., 1996. Economic Geology and Investigation of the Form of the Zarshuran Gold Deposit (North Takab). M.Sc. Thesis, Shahid Beheshti University, Tehran, Iran, 264 pp. (in Persian with English abstract)
Oliver, N.H.S., Pearson, P.J., Holcomb, R.J. and Ord, A., 1999. Mary Kathleen metamorphic hydrothermal uranium rare-earth element deposit: ore genesis and numerical model of coupled deformation and fluid flow. Australian Journal of Earth Sciences, 46(3):467–484.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106(3–4): 380–398.
Orris, G.J., Dunlap, P. and Wallis, C.J., 2015. Phosphate Occurrence and Potential in the Region of Afghanistan, Including Parts of China, Iran, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan. United States Geological Survey, Virginia, 70 pp.
Ortega, O.J., Gale, J.F.W. and Marrett, R., 2010. Quantifying diagenetic and stratigraphic controls on fracture intensity in platform carbonates: an example from the Sierra Madre Oriental, northeast Mexico. J. Struct. Journal of Structural Geology, 32(12): 1943–1959.
Philip, G., 1996. Landsat Thematic Mapper data analysis for Quaternary tectonics in parts of the Doon Valley, NW Himalaya, India. International Journal of Remote Sensing, 17 (1): 143-153.
Pinar, A., Kuge, K. and Honkura, Y., 2003. Moment tensor inversion of recent small to moderate sized earthquakes: implications for seismic hazard and active tectonics beneath the Sea of Marmara. Geophysical Journal International, 153(1): 133–145.
Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer, Netherlands, 1250 pp.
Price, N.J., 1966. Fault and Joint Development in Brittle and Semi-brittle Rocks. Elsevier, London, 186 pp.
Rahmati, A., Afzal, P., Abrishamifar, S.A. and Sadeghi, B., 2014. Application of concentration-number and concentration–volume fractal models to delineate mineralized zones in the Sheytoor iron deposit, Central Iran. Arabian Journal of Geosciences, 8(5): 2953–2965.
Raines, G.L., 2008. Are fractal dimensions of the spatial distribution of mineral deposits meaningful? Natural Resources Research, 17(2): 87–97.
Ramezani, J. and Tucker, R.D., 2003. The Saghand region, central Iran: U-Pb geochronology petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(7): 622–665.
Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill, New York, 568 pp.
Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. and Ewing, R., 2005. Solubility of gold in arsenian pyrite. Geochemica et Cosmochimica Acta, 69(11): 2781–2796.
Robert, F. and Poulsen, K.H., 2001. Vein formation and deformation in greenstone gold deposits. In: J.P. Richards and R.M. Tosdal (Editors), Structural controls on ore genesis. Society of Economic Geologists, Denver, pp. 111–155.
Rowen, L.C. and Bowers, T.L., 1995. Analysis of linear features mapped in Landsat Thematic Mapper and Side-Looking Airborne Radar images of the Reno 1o by 2o Quadrangle, Nevada and California, Implications for mineral resource studies. Photogrammetric Engineering and Remote Sensing, 61(6): 749–759.
Saki, A., 2010. Proto-Tethyan remnants in northwest Iran: Geochemistry of the gneisses and metapelitic rocks. Gondwana Research, 17(4): 704–714.
Samimi, M., 1992. Recognisance and preliminary exploration in the Zarshuran. Kavoshgaran Consulting Engineers Company, Tehran, 220 pp. (in Persian)
Shafaii Moghadam, H., Li, X.H., Stern, R.J., Ghorbani, G. and Bakhshizad, F., 2015. Zircon U-Pb ages and Hf-O isotopic composition of migmatites from the Zanjan-Takabcomplex, NWIran: Constraints on partial melting of metasediments. Lithos, 240–243(1): 34–48.
Sibson, R.H., 1996. Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology, 18(8): 1031–1042.
Solomon, S. and Ghebreab, G., 2006. Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. Journal of African Earth Sciences, 46(4): 371–378.
Taylor, S.R. and McLennan, S.M., 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241–265.
Tripp, G.I. and Vearncombe J.R., 2004. Fault/fracture density and mineralization: a contouring method for targeting in gold exploration. Journal of Structural Geology, 26(6–7): 1087–1108.
Wang, W., Zhao, J., Cheng, Q. and Liu, J. 2012. Tectonic-geochemical exploration modeling for characterizing geo-anomalies in southeastern Yunnan district, China. Journal of Geochemical Exploration, 122(9): 71–80.
Wei, S. and Pengda, Z., 2002. Theoretical study of statistical fractal model with applications to mineral resource prediction. Computers and Geosciences, 28(3): 369–376.
Whitney, D. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187.
Zhao, J., Chen, S. and Zuo, R., 2015. Identifying geochemical anomalies associated with Au-Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. Journal of Geochemical Exploration, 164(5): 54–64.
Zuo, R., Cheng, Q. and Xia, Q., 2009. Application of fractal models to characterization of vertical
distribution of geochemical element concentration. Journal of Geochemical Exploration, 102(1): 37–43.
CAPTCHA Image