رخساره‌های کانسنگ، کانی‌ شناسی، دگرسانی، ژئوشیمی و الگوی تشکیل کانسار باریت- روی-سرب-مس ونکان (سوکان)، شمال شرق سمنان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه پترولوژی و زمین‌شناسی اقتصادی، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

کانسار باریت-‌روی-‌سرب-‌مس ونکان (سوکان) با سنگ میزبان توف، توف ­شیلی، گدازه آندزیتی و تراکی ­آندزیت به سن ائوسن در شمالی‌ترین بخش از کمربند ماگمایی شمال ایران مرکزی در شمال‌شرق سمنان واقع‌شده است. توالی میزبان از پایین به بالا شامل سه واحد سنگی است: 1) واحد غنی از سنگ‌های رسوبی شامل کنگلومرا، سنگ آهک و ماسه‌سنگ، 2) واحد غنی از گدازه حاوی سنگ ­هایی با ترکیب حدواسط تا اسیدی، آندزیت و تراکی­ آندزیت به همراه میان‌لایه­ هایی از شیل و 3) واحد غنی از توف شامل توف‌های داسیتی، توف ریولیتی و توف­ شیلی. منطقه معدنی ونکان در ناودیسی با روند محوری شمال‌شرقی-جنوب‌غربی قرار دارد. کانه ­زایی در کانسار ونکان به‌صورت سه افق کانه زایی دیده می­ شود. افق اول و اصلی کانه ­زایی که در یال شمال­ غربی ناودیس قرار دارد، شامل کانسار ونکان 1 بوده که از پایین به بالا از پنج رخساره کانه ­دار تشکیل شده است: 1) رخساره رگه-‌رگچه ­ای، 2) کانسنگ سولفید توده ­ای، 3) کانسنگ باریت لایه­ ای، 4) کانسنگ لایه ­ای- نواری سولفیدی و 5) رخساره نواری رسوبی-‌برون‌دمی. کانسار ونکان 2 واقع در یال جنوب­ شرقی دارای رخساره ­های 1) رگه-‌رگچه­ ای و برشی و 2) نواری رسوبی-‌برون‌دمی است. بافت ماده معدنی اغلب شامل رگه-‌رگچه­ ای، توده­ ای، برشی،  نواری-‌لامینه و دانه ­پراکنده است. کانی‌های اولیه و اصلی در ماده معدنی به ترتیب شامل باریت، اسفالریت، گالن، پیریت، کالکوپیریت و مارکاسیت و کانی‌های ثانویه مالاکیت، کریزوکولا، گوتیت، لیمونیت، اسمیت­زونیت و سروزیت هستند. دگرسانی عمده در کانسار ونکان در سنگ دیواره کمرپایین از نوع کلریتی و سریسیتی و به مقدار کمتر اپیدوتی، آرژیلیکی و سیلیسی است. طبق پژوهش‌های انجام‌شده، به‌نظر می­ رسد کانسارهای باریت-‌فلزات ­پایه ونکان بر اساس مقایسه با انواع مختلف کانسارهای سولفید توده ­ای آتشفشان‌زاد، بیشترین شباهت را با کانسارهای نوع کوروکو نشان می­ دهند.

کلیدواژه‌ها


Aghanabati, S.A., 2004. Geology of Iran. Geological Survey of Iran, Tehran, 400 pp. (in Persian)
Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 103(8): 983–992. https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2  
Alavi-Naini, M., 1997. Geological map of Jam, scale 1:100000. Geological Survey of Iran.
Barnes, H.L., 1997. Geochemistry of hydrothermal ore deposits. John Wiley & Sons, NewYork: 797 pp.
Barrie, C.T. and Hannington, M.D., 1999. Introduction: classification of VMS deposits based on host rock composition. In: C.T. Barrie and M.D. Hannington (Editors), Volcanic-associated massive sulfide deposits: processes and examples in modern and ancient settings. Society of Economic Geologists, Littleton, pp. 2–10. https://doi.org/10.5382/Rev.08.01
Barrie, C.T., Ludden, J.N. and Green, T.H., 1993. Geochemistry of volcanic rocks associated with Cu-Zn and Ni-Cu deposits in the Abitibi subprovince. Economic Geology, 88(6): 1341–1358. https://doi.org/10.2113/gsecongeo.88.6.1341
Barton Jr, P.B., 1978. Some ore textures involving sphalerite from the Furutobe mine, Akita Prefecture, Japan. Mining Geology, 28(150): 293–300. https://doi.org/10.11456/shigenchishitsu1951.28.293
Franklin, J.M., Gibson, H.L., Galley, A.G. and Jonasson, I.R., 2005. Volcanogenic massive sulfide deposits. In: J.W., Hedenquist, J.F.H., Thompson, R.J., Goldfarb and J.P., Richards (Editors), Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Littleton, pp. 523–560. https://doi.org/10.5382/AV100.17
Galley, A.G., Bailes, A.H. and Kitzler, G., 1993. Geological setting and hydrothermal evolution of the Chisel Lake and North Chisel Zn-Pb-Cu-Ag-Au massive sulfide deposits, Snow Lake, Manitoba. Exploration and Mining Geology, 2(4): 271–295.  Retrieved June 13, 2021 from https://pubs.geoscienceworld.org/cim/emg/article/2/4/271/61028/Geological-setting-and-hydrothermal-evolution-of
Ghaffari, G., 2017. Mineralogy, geochemistry and genesis of the Poshteh barite-kaoline-copper deposit, east of Semnan. M.Sc. thesis, Shahrood University of Technology, Shahrood, Iran, 186 pp. (in Persian with English abstract)
Ghasemi, H. and Rezaei-Kahkhaei, M., 2015. Petrochemistry and tectonic setting of the Davarzan-Abbasabad Eocene Volcanic (DAEV) rocks, NE Iran. Mineralogy and Petrology, 109(2): 235–252. https://doi.org/10.1007/s00710-014-0353-3
Ghiasvand, A., Ghaderi, M. and Rashidnejad, N., 2009. Mineralogy, geochemistry and origin of iron deposits in north of Semnan. Geosciences, 18(72): 33–44. https://doi.org/10.22071/GSJ.2010.57133
Gibson, H.L., Allen, R.L., Riverin, G. and Lane, T.E., 2007. The VMS model: Advances and application to exploration targeting. In B. Milkereit (Editor), Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration. University Avenue Toronto, Ontario, pp. 713–730. Retrieved June 13, 2021 from http://www.dmec.ca/ex07-dvd/E07/pdfs/49.pdf
Glasby, G.P., Iizasa, K., Hannington, M., Kubota, H. and Notsu, K., 2008. Mineralogy and composition of Kuroko deposits from northeastern Honshu and their possible modern analogues from the Izu-Ogasawara (Bonin) Arc south of Japan: Implications for mode of formation. Ore Geology Reviews, 34(4): 547–560. https://doi.org/10.1016/j.oregeorev.2008.09.005
Goodfellow, W.D., 2004. Geology, genesis and exploration of SEDEX deposits, with emphasis on the Selwyn basin, Canada. In: M. Deb and W.D. Goodfellow (Editors), Sediment-hosted lead-zinc sulfide deposits: Attributes and models of some major deposits of India, Australia and Canada. Narosa publishing house, Delhi, India, pp. 24-99. https://doi.org/10.2113/gsecongeo.100.3.597
Grenne, T. and Slack, J.F., 2005. Geochemistry of jasper beds from the Ordovician Løkken ophiolite, Norway: origin of proximal and distal siliceous exhalites. Economic Geology, 100(8): 1511–1527. https://doi.org/10.2113/gsecongeo.100.8.1511
Haji-Bahrami, M., 2012. Petrography, geochemistry and genesis of the Hamyard iron deposit, northeast of Semnan. M.Sc. Thesis, Damghan University, Damghan, Iran, 175 pp. (in Persian with English abstract).
Halbach, P.E., Fouquet, Y. and Herzig, P., 2003. Mineralization and compositional patterns in deep-sea hydrothermal systems. In: P.E., Halbach, V., Tunnicliffe, J.R., Hein (Editors), Energy and Mass Transfer in Marine Hydrothermal Systems. Dahlem University Press, Berlin, pp. 85–122. Retrieved June 13, 2021 from https://d-nb.info/966617797/04
Hannington, M.D., de Ronde, C.E.J. and Peterson, S., 2005. Sea-floor tectonics and submarine hydrothermal systems. In: J.W., Hedenquist, J.F.H., Thompson, R.J., Goldfarb and J.P., Richards (Editors), Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Littleton, CO, pp. 111–141. https://doi.org/10.5382/AV100.06
Hashemi, F., Mousivand, F. and Rezaei-Kahkhaei, M., 2015. Ore horizons, ore facies, mineralogy and geochemistry of volconogenic massive sulfide (VMS) deposits of the Varandan Ba-Pb-Cu deposit, southwest of Qamsar Iran. Journal of Economic Geology, 9(2): 587-616. (in Persian with English abstract). https://doi.org/10.22067/econg.v9i2.45447
Herrington, R., Maslennikov, V., Zaykov, V., Seravkin, I., Kosarev, A., Buschmann, B., Orgeval, J.J., Holland, N., Tesalina, S. and Nimis, P., 2005. Classification of VMS deposits: lessons from the South Uralides. Ore Geology Reviews, 27(1-4): 203–237. http://doi.org/10.1016/j.oregeorev.2005.07.014
Hollis, S.P., Yeats, C.J., Wyche, S., Barnes, S.J., Ivanic, T.J., Belford, S.M., Davidson, G.J., Roache, A.J. and Wingate, M.T.D., 2015. A review of volcanic-hosted massive sulfide (VHMS) mineralization in the Archaean Yilgarn Craton, Western Australia: Tectonic, stratigraphic and geochemical associations. Precambrian Research, 260: 113–135. https://doi.org/10.1016/j.precamres.2014.11.002
Huston, D.L., Relvas, J.M.R.S., Gemmell, J.B. and Drieberg, S., 2011. The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic–hydrothermal contributions. Mineralium Deposita, 46(5–6), 473–507. https://doi.org/10.1007/s00126-010-0322-7
Khanehdar-Kolver, M., 2017. Mineral chemistry of intrusive rocks and application of remote sensing for identification of the Gardaneh Ahovan rocks, NE Semnan. M.Sc. Thesis, Shahrood University of Technology, Shahrood, Iran, 195 pp. (in Persian with English abstract).
Large, R.R., 1992. Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models. Economic Geology, 87(3): 471–510. https://doi.org/10.2113/gsecongeo.87.3.471
Large, R.R., McPhie, J., Gemmell, J.B., Herrmann, W. and Davidson, G.J., 2001. The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions: Some examples from Australia. Economic Geology, 96(5): 913–938. https://doi.org/10.2113/gsecongeo.96.5.913
Lobanov, K. and Gaskov, I., 2012. The Karchiga copper massive sulfide deposit in the high grade metamorphosed rocks of the Kurchum block: geologic structure, formation, and metamorphism (Rudny Altai). Russian Geology and Geophysics, 53(1):77-91. https://doi.org/10.1016/j.rgg.2011.12.006
Montelius, C., 2005. The genetic relationship between rhyolitic volcanism and Zn-Cu-Au deposits in the Maurliden Volcanic Centre, Skellefte District, Sweden: volcanic facies, lithogeochemistry and geochronology. Ph.D. thesis, Lulea University of Technology, Lulea, Sweden. 135 pp.
Mousivand, F., Rastad, E., Hoshino, K. and Watanabe, M., 2007. The Bavanat Cu-Zn-Ag orebody: first recognition of a Besshi-type VMS deposit in Iran. Neues Jahrbuch Für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 183(3): 297–315. https://doi.org/10.1127/0077-7757/2007/0075
Ohmoto, H., 1996. Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geology Reviews, 10(3–6): 135–177. https://doi.org/10.1016/0169-1368(95)00021-6
Ohmoto, H. and Skinner, B.L., 1983. The Kuroko and related volcanogenic massive sulphide deposits: Introduction and summary of new findings. In: H. Ohmoto and B.J. Skinner (Editors), Kuroko and related volcanogenic massive sulphide deposits. Economic Geology, Canada, pp. 1-8. https://doi.org/10.5382/Mono.05.01
Pezeshki, F., 2019. Mineralogy, geochemistry and genesis of the Vanakan Barite-Kaoline deposit, east of Semnan. M.Sc. thesis, Shahrood University of Technology, Shahrood, Iran, 200 pp. (in Persian with English abstract)
Revan, M.K., Genç, Y., Maslennikov, V.V., Maslennikov, S.P., Large, R.R. and Danyushevsky, L.V., 2014. Mineralogy and trace element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geology Reviews 63: 129–149. https://doi.org/10.1016/j.oregeorev.2014.05.006
Robert, R., Seal, I.I. and Jane, M., 2008. Environmental geochemistry of a Kuroko-type massive sulfide deposit at the abandoned Valzinco mine, Virginia, USA. Applied Geochemistry, 23(2): 320–342. https://doi.org/10.1016/j.apgeochem.2007.10.001
Samadi, M. and Moin-vaziri, H., 1998. Petography, petrogenesis and geochemistry of igneous rocks at north to northeast of Semnan. M.Sc. Thesis, Tarbiat Moaalem University, Tehran. Iran, 128 pp.
Schlatter, D., 2005. Volcanic stratigraphy, chemical stratigraphy, and hydrothermal alteration of the Petiknäs South Volcanic-hosted massive sulfide deposit, Sweden. Licentiate thesis (including maps), Lulea University of Technology, Lulea, Sweden. 128 pp.
Seravkin, I.B., 2013. Correlation between compositions of ore and host rocks in volcanogenic massive sulfide deposits of the Southern Urals. Geology of Ore Deposits, 55(3): 207–224. https://doi.org/10.1134/S1075701513030057
Shahri, M., 2011. Investigation of skarnization, metasomatism and related to mineralization in Zartul area (Northeast Semnan). M.Sc. thesis, University of Technology, Shahrood, Iran, 144 pp. (in Persian with English abstract)
Shikazono, N., Ogawa, Y. and Utada, M., 2008. Geochemical behavior of rare earth elements in hydrothermally altered rocks of the Kuroko mining area, Japan. Journal of Geochemical Exploration, 98(3): 65–79. https://doi.org/10.1016/j.gexplo.2007.12.003
Singer, D.A., 1986. Descriptive model of kuroko massive sulfide. In: D.P. Cox and D.A. Singer (Editors), Mineral deposit models. The United States Geological Survey Bulletin, America, pp. 189–190. Retrieved June 13, 2021 from https://pubs.usgs.gov/bul/b1693/html/bull0bfp.htm
Tajeddin, H., Rastad, E., Yaqoubpour, A. and Mohajel, M., 2010. Stages of formation and development of sulfide deposit rich in Barika gold, eastern Sardasht, northwest of Sanandaj-Sirjan metamorphic zone: Based on fabrication, structures and texture of fluid inclusion. Journal of Economic Geology, 1(2): 97–121. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V2I1.3688
Taylor, C.D., Zierenberg, R.A., Goldforb, R.J., Kilburn, J.E., Seal, R.R. and Kleinkopf, M.D., 1995. Volcanic-associated massive sulfide deposits. United States Geological Survey, America, Open-File Report 95–831, 8 pp. Retrieved June 13, 2021 from https://pubs.usgs.gov/of/1995/ofr-95-0831/CHAP16.pdf
Van Staal, C.R. and Goodfellow, W.D., 2007. Pre-Carboniferous tectonic evolution and metallogeny of the Canadian Appalachians. Mineral deposits of Canada: A synthesis of major deposit-types, District Metallogeny, the Evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, 5: 793–818. Retrieved June 13, 2021 from https://www.researchgate.net/publication/285023302
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Yeats. C.J., Hollis. S.P., Halfpenny. A., Corona. J., Laflamme. C., Southam. G., Fiorentini. M., Herrington. R.J. and Spratt. J., 2017. Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan. Ore Geology Reviews 84: 20–41. https://doi.org/10.1016/j.oregeorev.2016.12.014
CAPTCHA Image