سن سنگی زیر کانه به روش اورانیم، سرب در منطقه اکتشافی مس-طلای پورفیری ماهر آیا: شاهدی بر
دروه مالاژنیک اتوس میانی ذخایر پورفیری در قرقیر ایران
آزاده ملکزاده شفروندی و محمدحسن کرمپور
گروه پژوهشی اکتشاف ذخایر معدنی سرب ایران، دانشگاه فردوسی مشهد، مشهد، ایران
دریافت مقاله: ۱۳۸۹/۷/۱۷، پذیرش نهایی: ۱۳۸۹/۱۲/۱۷
چکیده
شرح ایران به‌واسطهٔ رژیم تکتونیکی زون فرونشین در گسترش که به فعالیت‌های ماگمایی آگکن‌ها که فعال‌کننده‌های تشکیل دهنده پورفیری‌های مادرآدن در زمان تشکیل‌دهنده است. این تکثیر نشان داد که اکتشافی مس-طلای پورفیری‌های مادرآدن در قرقیر ایران است. این اکتشافات در دو منطقه اکتشافی مس-طلای پورفیری‌های مادرآدن شناسایی نشده است. اکتشافات روش‌های مورد استفاده
است. اکتشافات اولیه در مس-طلای پورفیری‌های مادرآدن در قرقیر ایران است. این اکتشافات در دو منطقه اکتشافی مس-طلای پورفیری‌های مادرآدن شناسایی نشده است. اکتشافات روش‌های مورد استفاده
است. اکتشافات اولیه در مس-طلای پورفیری‌های مادرآدن در قرقیر ایران است. این اکتشافات در دو منطقه اکتشافی مس-طلای پورفیری‌های مادرآدن شناسایی نشده است. اکتشافات روش‌های مورد استفاده
است. اکتشافات اولیه در مس-طلای پورفیری‌های مادرآدن در قرقیر ایران است. این اکتشافات در دو منطقه اکتشافی مس-طلای پورفیری‌های مادرآدن شناسایی نشده است. اکتشافات روش‌های مورد استفاده

واژه‌های کلیدی: بلوک اثرات، اتوس میانی، زیرکن-سنگ‌سنگی زمین، سنگ‌سنگی، سنگ‌سنگی، سنگ‌سنگی، سنگ‌سنگی

ICP-MS

مقدمه
سن سنگ‌سنگ‌های آذری در این نوامه به روش‌های مختلف از جمله روش Fission track صورت گرفت. روش مورد نگرش با اندازه‌گیری از پرتوهای U-Pb و U-Th-K-Ar رادیولوژیکی مناسب ناشناخته‌ها

محدوده ماگمایی-گرمانی (انتساب) در طی زمان دارد که

Aza_malek@yahoo.com

مسؤل مکاتبات
زیرکان یکی از کهن‌ترین فرم‌های معمول در تعداد زیادی از سنگ‌های ویژه سنگ‌های آذرین فلسفی است [1-4]. از ویژگی‌های این کانی می‌توان به مقاومت بالا در برای هوازدگی، انرژی، درگیری و حرارت اشاره نمود [آد، این خواص بی‌نظیر باعث شده تا زیرکان در فرم‌های خیر مورد توجه قرار گرفته و کاربردهای مختلف داشته باشند. گسترده‌ترین استفاده از این کانی در زمین‌شناسی، مطالعات زمین‌سنجی است [5-12].

منطقه اکتشافی ماهرآباد در فاصله حدود ۷۰ کیلومتری جنوب غربی شهرستان برجند، مرکز استان خراسان جنوبی در محدوده بین طولهای جغرافیایی ۵۹°۴۶' تا ۶۰°۱۸' و عرضهای جغرافیایی ۲۹°۳۰' تا ۳۱°۴۵' طبق نقشه ۲۳ شمایی قرار دارد. این کانسار از نظر تجربه‌های ساختاری در شرق بلک لوت واقع شده است (شکل ۱).

شکل ۱. موقعیت جغرافیایی منطقه اکتشافی ماهرآباد در بلک لوت و شرق ایران.
روش مطالعه
برای بررسی تفصیلی منطقه اکتشافی ماه‌ریز، انتخاب درست نمونه‌های سن‌سنجی و تعیین سن بی‌روی کانی زیرکان مطالعات زیر انجام گرفت:
1- مطالعه حدود ۳۵۰ مقطع نازک و نازک صیقلی از نمونه‌های سطحی و زیرسطحی.
2- تهیه نقشه زمینشناسی روییابی با مقياس ۱:۱۰۰۰۰ از بخش‌های مهم کانی‌سازی تا تکیید پورشه فلک زود توده‌های توده‌ای مرتب.
3- تهیه نقشه‌التراسونی روییابی با مقياس ۱:۱۰۰۰۰ از کل منطقه و مقياس ۱:۲۰۰۰۰۰ از بخش‌های مهم کانی‌سازی.
4- تهیه نقشه تراکم گره‌چه روییابی با مقياس ۱:۱۰۰۰۰۰ از کل منطقه و مقياس ۱:۲۰۰۰۰۰ از بخش‌های مهم کانی‌سازی به منظور فهم و ارتباط کانی‌سازی و نوع توده‌ها.
5- مطالعه جمعاً ۶۰ متر معمولی به چهار گمانه حفر شده و تهیه لایه‌ای زمین‌شناسی- التراسونی.-کانی‌سازی آنها تجزیه زنوسیمی‌یا ۹ مواد از توده‌های نفوذی XRF برای اکست‌های الکترونی اصلی و روش ICP-MS برای عناصر فرعی و نادرخارکا.
6- انتخاب دو نمونه برعی سن‌سنجی پس از مطالعات دقیق صنایعی تعمیر و روابط زمینی نسبی توده‌ها ارتباط آنها با کانی‌ساز، بررسی‌های پتروگرافی، التراسونی، کانی‌سازی و زنوسیمی توده‌های نفوذی در این انتخاب سعی شد تا از توده‌های سن‌سنجی که مشاهده اصلی کانی‌سازی تحقیق داده شد، منظور ویژه قرار گیرد، سپس عناوین کانی‌سازی به عوامل کانی‌فریعي، مایعی به اندازه جهش‌های متشکل و در ذرت توده‌های میکروکرویحی‌های درشت‌تر از ۵۵ میکرون مناسب سن‌سنجی هستند، در بین توده‌های نفوذی مرتبط با کانی‌سازی ماه‌ریز از توده‌های سن‌سنجی محدوده I-MA1 به دلیل اهمیت این بخش و تندیکی که در مزیت سیستم کانی‌سازی مورد مطالعه و
فیزیک‌دانان، می‌دانید که در این روش در هیچ‌گاه محسوس نمی‌شود و مطالعه آن را به‌عنوان یکی از پیامدهای مشابه یا ممکن است به‌عنوان یکی از پیامدهای مشابه از خدمات شناسی داشته باشد.

نمونه‌برداری:

نمونه‌برداری به‌کمک یک دستگاه محاسباتی و با استفاده از یک دستگاه محاسباتی می‌شود.

آزمایشگاه:

آزمایشگاه‌ها به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری، می‌توانند به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری مورد استفاده قرار گیرند.

لیزر:

لیزر در روش‌های مختلفی از نظر مختصاتی و محاسباتی، می‌تواند درک شود که در این روش در هیچ‌گاه محسوس نمی‌شود و مطالعه آن را به‌عنوان یکی از پیامدهای مشابه یا ممکن است به‌عنوان یکی از پیامدهای مشابه از خدمات شناسی داشته باشد.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.

لیزر Chron:

لیزر Chron نیز به‌عنوان یکی از پیامدهای مشابه در مورد نمونه‌برداری در این روش در هیچ‌گاه محسوس نمی‌شود.
نمونه از انواع کانال‌سازی مس- طلا شامل مس- طلا پورفروی (مراهآباد، خوی، کرمان)، مس- مس طلا همراه با اکسید أهی (فله‌زاری)، نوی رگه‌گاهی (سه چنگی، حوض رئیس و ضارک‌سی) و طلا ای برخی (شیخ آباد و هنیج). بنابراین در تشریحی را به ویژه در شمال و شمال شرق شانس می‌دهد.

مقدار اکتشافات مراهآباد از نظر زمین‌شناسی ناحیه‌ای در محدوده مس- مس- طلا پورفروی گرفته است. با توجه به نقاط شمال کانال‌سازی در حجرات سطحی، داستانت، روبرت، توپ و اینکمینی است که در برخی نقاط مورد نفوذ سنگ‌های نیمه‌عمیق اسپیدی- حداکثر واقع شده‌اند. اما مطالعات صحراوی و آزمایشگاهی این پروژه نشان‌داد که بسیاری از واحدهایی که به نظر می‌رسد، سنگ‌های مس- طلا پورفروی و دومین سنگ‌های اکتشافی سنگ‌های نفت‌پورفرویی- سنگ‌های مس- طلا پورفرویی- نفوذی محله‌ای ناحیه‌ی اکتشافی و اقلیم‌زا افتتاح شده تا آن‌ها بروز آن.

شکل 2. تصویر کانال‌سازی‌های مس- طلا شامل مس- طلا پورفروی (مراهآباد، خوی، کرمان)، مس- مس طلا همراه با اکسید أهی (فله‌زاری)، نوی رگه‌گاهی (سه چنگی، حوض رئیس و ضارک‌سی) و طلا ای برخی (شیخ آباد و هنیج). بنابراین در تشریحی را به ویژه در شمال و شمال شرق شانس می‌دهد.

زمین‌شناسی و پتروگرافی کانسار

براساس مطالعات صحراوی و آزمایشگاهی انجام شده، واحدهای زمین‌شناسی شناسی‌های مربوط به محدوده اکتشافی مراهآباد را
پروپیلنیک قرار گرفته و بوتیونیت ها به کلریت ایدوتوت و کلستین تجزیه شدهاند. کاتیون‌های نیز به صورت استوکورک و آفسان در ان دیده می‌شود.

هورنیلند کوتور موتی‌ل پروپراتور که در شمال شرقی ناحیه اسپانیا و انگلیس رخ خورده درعاب آبی‌پوستی با زمینه دانه شکری MA-1 (پلاژیوکلاز با 7 % کمتر طول، 6/3 % فلسفیسیت و 7 % کمتر طول، 6/3 % کوارتز) زمینه دانه شکری مانند کوتور است که را به‌طور 60 عدد در مترمی برای نسبی است. پیریت، کالکوبورت و یا طور قدر بی‌پروپراتور و کاتیون‌های زون اکسیدان مانند اسیدهای آهن بانی ملاتیک فیوزور و ود مریاء کاتیون‌های دیده شده در این واحد است.

هورنیلند موتی‌ل پروپراتور بافت پروپراتور و گلووپروپراتور با زمینه دانه شکری دارند. فنوسیستی‌ها شکل 11-10/4 میلیمتر طول و 8/5 % هورنیلند تا 3 میلیمتر طول است. زمینه سنج علائم بر گاناثی‌های نام‌برده شامل کاتیون‌های فرعی و کاتیون‌های تانیه مانند کوتور است. کاتیون‌های سنج علایم ورود به ساختار زیر قرار گرفته و انواع استوکورک همراه با کاتیون‌های اولیه سولفیدی و کاتیون‌های زون اکسیدان- سوپرتون در آن دیده می‌شود.

بوتیونیت موتی‌ل پروپراتور دارای 10-3/5 % (پلاژیوکلاز 5/1 %، 5 % فلسفیسیت و 5 % کوارتز) به صورت پروپراتور می‌باشد. زمینه سنج دانه دیده نمی‌شود و شامل کاتیون‌های نام‌برده و کاتیون‌های یافته است. فلسفیسیت‌ها عمداً به سیرست، کلستین و کاتیون سی تجزیه شدهاند. تانیه دانه به‌طور تکرار تانیه و در محلول ماندار قرار گرفته و انواع استوکورک همراه با کاتیون‌های اولیه سولفیدی و

کاتیون‌های زون اکسیدان- سوپرتون در آن دیده می‌شود.

بوتیونیت موتی‌ل پروپراتور دارای 10-3/5 % (پلاژیوکلاز 5/1 %، 5 % فلسفیسیت و 5 % کوارتز) به صورت پروپراتور می‌باشد. زمینه سنج دانه دیده نمی‌شود و شامل کاتیون‌های نام‌برده و کاتیون‌های یافته است. فلسفیسیت‌ها عمداً به سیرست، کلستین و کاتیون سی تجزیه شدهاند. تانیه دانه به‌طور تکرار تانیه و در محلول ماندار قرار گرفته و انواع استوکورک همراه با کاتیون‌های اولیه سولفیدی و

کاتیون‌های زون اکسیدان- سوپرتون در آن دیده می‌شود.
Figure 3. Geological map of the Maherabad prospect area.

Legend:
- Recent alluvium
- Young terraces, gravel fans
- Bio-Hb monzonite porphyry
- Bio-Hb monzodiorite porphyry
- Hb monzodiorite porphyry
- Hb diorite porphyry
- Intrusive breccia
- Bio-Px Gabbro
- Hb-Px diorite porphyry
- Bi-Px-Bio-Hb monzodiorite porphyry
- Hb monzodiorite porphyry
- Bio-Px-Hb diorite porphyry
- Hb diorite porphyry
- Bio diorite porphyry
- Bio-Px monzodiorite to diorite porphyry
- Hb-Px-Bio diorite porphyry
- Bio-Hb diorite porphyry
- Bio-Hb monzonite porphyry
- Bio-Hb monzonite porphyry
- Bio-Hb monzonite porphyry
- Hyperthermal breccia
- Bio monzonite porphyry
- Hb monzonite porphyry
- Monzonite porphyry

Note: Fault, Inferred fault, Village, First class road, Dirt road, Drainage.
Geological map of MA-1 prospect area

Legend
- Recent alluvium
- Young terraces, gravel fans
- Px-Bio-Hlb monzodiorite porphyry
- Bio-Px-Hlb diorite porphyry
- Bio-Px monzodiorite to diorite porphyry
- Bio-Hlb diorite porphyry
- Bio-Hlb monzonite porphyry
- Hlb-Bio monzonite porphyry
- Hlb-Qtz monzonite porphyry
- Bio monzonite porphyry
- Hlb monzonite porphyry
- Monzonite porphyry

Drilling
Ancient working
Fault
Dirt road
Drainage

Malekzadeh, A. & Karimpour, M.H., 2008
آنتی‌راسون: منطقه افتتاحی ماه‌آباد به شدت تحت تأثیر آنتی‌راسون قرار گرفته است. برخی از زبان‌های ماه‌آباد به روستاهای مختلف، آنتی‌راسون ویژه منطقه را به خوبی بارز می‌کند. گسترش آنتی‌راسون را به‌طور مستقیم با گسترش توده‌های نفوذی دارد.

زبان‌های آنتی‌راسون در منطقه افتتاحی ماه‌آباد زبان‌های پرسپکتیک، سرسپکتیک، کورنیز، سرسپکتیک، سرسپکتیک، پرپتیک، پرپتیک که به‌طور مشخص شده است. در سطح محدوده آنتی‌راسون‌های کاورت، سرسپکتیک، پرپتیکی به شدت بیش از 50 درصد، پرپتیکی به شدت بین 30 تا 50 درصد و پرپتیکی ضعیف (شتر منطقه) به شدت کمتر از 20 درصد حجم سنج مشاهده می‌شود (شکل 5)۱۸۵۱.

آنتی‌راسون‌های غالب در زون کورت‌ز- سرسپکتیک- کورت‌ز است که واقع‌هایی مانند توده‌های نفوذی و دوبنامی‌های ماه‌آباد را تحت تأثیر قرار داده است. این زون در یک زمان زرد روند مناسب به کمی قهوه‌ای به علت حضور اکسیدهای اهل تابعه حاصل از اکسیدهای شنی سالنده در سطح زمین مشخص می‌شود. مهم‌ترین کانی انتی‌راسون‌های کورت‌ز است که در قبال رگ‌چه و با داده متغیرهای گوناگون می‌چرخد. مقدار آن از کمتر از 10 درصد می‌باشد. سرسپکتیکی که حاصل اثرات شنا سالنده بوده از کمتر از 1 درصد می‌باشد. پرپتیک به عنوان مهم‌ترین کانی سولفاتیدی این زون عمدها در رگ‌چه‌هاست و تنها
کانی‌ها در سطح اکسیدهای آلن نانوی مانند همان‌انگار، کوینت
و زاروستی تبدیل شده‌اند. مالاکیت، فیروزه و وید مس‌دار نیز
کانی‌های دیگر زون اکسیدان هستند که در نقاط مختلف
می‌توانند در سطح هم‌زمان بیشتر از 1 میلی‌متر کاوانه‌ها
وجود دارد که باعث تبدیل از: استوکورپ، پراکند و رگه‌ها
بیش است. کانی‌های سولفیدی در زون پوکریت- سریتی-
کریتیت- پیرت و مقدار اندکی از آن در زون سیلیسی-
پوکریتیک دیده می‌شود که اغلب در مطالعات زیرسطحی
تشخیص داده شده‌اند.[25]

کانی‌های استوکورپ مهترین بافت کانی‌سازی در گز
منطقه‌ای اکسیدهای آلن را تشکیل می‌دهند. در سطح
و یا طبقه‌ای بیشتر رگه‌های کارترز- سولفیدی طرفی
مشخص می‌شود. اولین کانی مهم از زون کارترز است که به
مقدار کم‌تر به دست می‌آید. میزان معکوس میدانی که
در این بخش حداکثر در 5 میلی‌متر در متریم‌های محسوب
شده‌اند است.[15]

عکس‌های منطقه زیرسطحی سیلیسی- پوکریتیک عمده‌ای
در وابستگی به درجه و حالت حضور کانی‌های مثلک می‌باشد
و ایدیت و وجود رگه‌های کارترز- سولفیدی طرفی
مشخص می‌شود. اولین کانی مهم از زون کارترز است که به
مقدار کم‌تر به دست می‌آید. میزان معکوس میدانی که
در این بخش حداکثر در 5 میلی‌متر در متریم‌های محسوب
شده‌اند است.[15]

کارترز و سولفیدی ضعیف در توده پتریوس بیونیت
هوبرنرد نمونه‌دوست پتریوسی و بیونیت پتریوسی هورنند
و پلای‌پایکلاستیک، کانی‌های فنر از زون عمده‌ای مگنتینی
(کمتر از 1 درصد) است. پراکنده انرژی می‌باشد که
در این بخش داده‌ها در 5 میلی‌متر در متریم‌های محسوب
شده‌اند است.[15]

کانی‌های مست - زئوشیبی
کانی‌های مس- طلا پتریوسی ماهراد عمده‌ای در میدان‌های
ارتشه‌ای TA-II MA-III تا 12 کیلومتر مربع می‌شود. مطالعات زیرسطحی نشان می‌دهد که
این گره‌های می‌توانند در زیر بهتر با یکدیگر در ارتباط
کانی‌های سولفیدی مهم‌ترین شاخص پریت، پوکریتیک، پورتنیک و
به طور فرعی سولفیدی، کانی‌های مس- طلا پتریوسی ماهراد
و گاه درصد این
بين 5 تا 10 درصد، بورپیت و اسفالت‌پیت در حد 1 تا 2 درصد و گالن کمتر از 0.5 درصد در رگه‌های دیده می‌شود [۲۵].
کانی سازی مس پورفری است. وضعیت سیلیسی-پورفریک از کمتر از 7 رگچه در متمایز متفاوت است (شکل 6). این رگچه‌ها بر اساس ترکیب کانی‌شناسی به 8 نوع گروه قابل تعیین کرده‌اند:

1- کوارت- پریت ± کالکوپیرت. 2- کوارت- مگنتیت. 3- کوارت- کالکوپیرت- 4- کوارت- کالکوپیرت- کلریت. 5- کوارت- مگنتیت- کالکوپیرت. 6- کوارت- کوارت- مگنتیت. 7- کوارت- کوارت- کوارت- کوارت. 8- کوارت- پریت- پریت. پریت 25 درصد کوارت- کوارت- کوارت- کوارت در رگچه‌ها تعیین مقدار مگنتیت در رگچه 20 درصد.

می‌رسد [25].

کانی سازی سولفیدی پراکنده (افتان). در زون‌های اطرافیون کوارت- پریت- سیلیسی- پورفریک مشاهده می‌شود و عمدتاً شامل پریت و کالکوپیرت (تا 3 درصد) است. کانی سازی رگچه کوارت- کوارت (که در عرض دیگر، فعالیت‌های محلولولی هیدروتالکالی در ناحیه هستند) در اثر پریت‌های مرده (رده کالکوپیرت (تا 300 درصد هستند [25]). بررسی نتایج اشتاقنشاته (متونسی) اولیه، مس (8680 تا 8796 میلی‌گرم در تن) و آهن (179 تا 189 میلی‌گرم در تن) وجود دارد. بخش اصلی مس و طلا در اطرافیون سیلیسی- پورفریک و کوارت- کوارت- پریت- کوارت- پریت در گامانها است. [25]

تشخیص داده شد.

سن‌سنجی

براساس مدل‌های پتروپترون، پریت‌های مرتفع با کانی‌های مس- طلا پورفریک ماهارا، توده‌های نفوذی نوع A، مترالمنوئس کانی‌گا را از پتاسیم تشویقی انتخاب کرده‌اند. این سن‌ها با توزیعی زئوستیریومی 59% > 80 ppm Na_2O, MgO < 2, Al_2O_3 > 15. LREE/Sr/Y > 55, Yb < 1/942 ppm, Y < 18 ppm, Sr LILE محتوی شده با هم شکستگی گزارش و عناصر Na, Nb) HFSE و نسبت به HREE (Ba:K:Rb:Cs: Sr) مناسب. [25]

از آنجایی که توده‌های موزونیتی مشاهده اصلی کانی‌سانی در ماهارا هستند و تعیین سن توده‌ها به مدل‌های تعیین سن
ماگمایی- گرمایی، کانی سازی به طور دوره‌ای در جنگ مرحله و در فاصله حدود 3 تا 4 میلیون سال انجام می‌شود. اختلاف سنی توده‌های مذکور نشان می‌دهد که دست کم به حدود یک میلیون سال ورود محلول کانه‌دار همراه با تبلور و نفوذ توده‌های مختلف در منطقه در جریان بوده است.

جدول 1. نتایج آنالیز سن نمونه‌ی توده‌های موئنیتی محله‌ی اکتشافی ماهراوید (نمونه‌ی 64-MA)

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>U (ppm)</th>
<th>206Pb/207Pb</th>
<th>U/Th</th>
<th>206Pb/206Pb</th>
<th>± (%)</th>
<th>208Pb/206Pb</th>
<th>± (%)</th>
<th>208U/238U</th>
<th>± (%)</th>
<th>Best Age (Ma)</th>
<th>± (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-1</td>
<td>649</td>
<td>0.5</td>
<td>1/3</td>
<td>22/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-2</td>
<td>482</td>
<td>0.5</td>
<td>1/5</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-3</td>
<td>474</td>
<td>0.5</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-4</td>
<td>518</td>
<td>0.8</td>
<td>1/8</td>
<td>22/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-5</td>
<td>776</td>
<td>1/3</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-6</td>
<td>358</td>
<td>1/0</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-7</td>
<td>350</td>
<td>1/0</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-8</td>
<td>306</td>
<td>0.5</td>
<td>1/10</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-9</td>
<td>328</td>
<td>1/3</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-10</td>
<td>465</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-11</td>
<td>424</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-12</td>
<td>299</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-13</td>
<td>332</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-14</td>
<td>219</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-15</td>
<td>224</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-16</td>
<td>292</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-17</td>
<td>224</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-18</td>
<td>224</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-19</td>
<td>292</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
<tr>
<td>64-20</td>
<td>324</td>
<td>0.1</td>
<td>1/3</td>
<td>21/16</td>
<td>0/3</td>
<td>5/4</td>
<td>2/7</td>
<td>3/0</td>
<td>0/0</td>
<td>3/8</td>
<td>1/10</td>
</tr>
</tbody>
</table>
آدمه جدول (1) نتایج آلاینده سن سنجی نمونه از توده‌های موئونوئیتی منطقه اکتشافی ماه‌آباد (نمونه 90-MA)

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>شماره</th>
<th>U (ppm)</th>
<th>268Pu/238Pu</th>
<th>U/Th</th>
<th>238Pu/235U ± (%i</th>
<th>230Th/235U ± (%)</th>
<th>238U/235U ± (%)</th>
<th>Best Age (Ma)</th>
<th>± (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-1</td>
<td>296</td>
<td>230</td>
<td>296</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-2</td>
<td>231</td>
<td>231</td>
<td>231</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-3</td>
<td>285</td>
<td>285</td>
<td>285</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-4</td>
<td>798</td>
<td>798</td>
<td>798</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-5</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-6</td>
<td>293</td>
<td>293</td>
<td>293</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-7</td>
<td>230</td>
<td>230</td>
<td>230</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-8</td>
<td>230</td>
<td>230</td>
<td>230</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-9</td>
<td>288</td>
<td>288</td>
<td>288</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-10</td>
<td>231</td>
<td>231</td>
<td>231</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-11</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-12</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-13</td>
<td>288</td>
<td>288</td>
<td>288</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-14</td>
<td>231</td>
<td>231</td>
<td>231</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-15</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-16</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-17</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-18</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-19</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-20</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-20A</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-21</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-22</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-23</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-24</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>90-25</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>1.0</td>
<td>10.0</td>
<td>9.4</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

شکل 7: نمودار داده‌ها
شکل vِ b. پلاک میانگین سن تعیین شده از اطلاعات ایزوترپی U-Pb برای نمونه هورنبلند کوارتز مونژونیت پورفیری (MA-90).

شکل a. پلاک کنوریدای ترا و واسیرگ (1973) از اطلاعات ایزوترپی U-Pb برای نمونه پیتونیت هورنبلند مونژونیت پورفیری (Ma-64).

شکل a. پلاک میانگین سن تعیین شده از اطلاعات ایزوترپی U-Pb برای نمونه پیتونیت هورنبلند مونژونیت پورفیری (Ma-64).
با توجه به تعیین سن‌های انجام شده در منطقه اکتشافی ماهرآباد رابطه با انسان میانی (آشکوب بارون) است. سن متوسط برای توذه‌های نفوذی مربوط با کانی‌هایی در منطقه و همجنس کانی‌های سنی‌را در سال پیش در نظر گرفته می‌باشد.

Rb-Sr & Sm-Nd

دو نمونه از توذه‌های نفوذی منطقه برابر می‌باشند بر اساس مطالعات پتروگرافی و نتایج تجزیه عناصر الیاف، جزئی و قلبی‌های خاکی که فاقد Sm-Nd و Rb-Sr انتسابه برای رادیواژنتوپی‌های در دانشگاه کاردیگان امکان تجزیه شده‌اند. نتایج تجزیه این نمونه‌ها (78Sm/76Sm) در جدول‌های (2 و 3) آغاز شده است. میزان یک اولیه با توجه به سن 29 میلیون سال محاسبه شد initial

(جدول 2، میزان (Nd/144Nd) اولیه نیز با توجه به سن 29 میلیون سال محاسبه شد (جدول 2) در نمونه‌های 100 از منطقه مطالعاتی و مامگاهی مشابه

gرفته از بوسته قاره‌ای و جبه مورد مقایسه قرار گرفتند. مشابه می‌باشد

در منطقه مطالعاتی خارج از بوسته قاره‌ای بوده است.

شکل 9 رابطه سن‌نسبی توذه‌های نفوذی مربوط با فاز اصلی کانی‌های منطقه اکتشافی ماهرآباد براساس روابط صحرایی و آزمایشگاهی همراه با نوع انتساب و رگ‌های نفوذی کوارتز سیلیکی و تعیین سن‌های انجام شده برای توذه موتوئینی. با توجه به فرمی‌پتیت‌های اولیه توذه‌های موتوئینی، موتوئینی کوارتز، موتوئینی بیوئیت، موتوئینی بیوئیت موتوئینی بیوئیت نسبی به توذه موتوئینی کوارتز موتوئینی بیوئیت و فاصله سنی 10 سال پیش انالیز شده، شروع کانی‌سازی می‌باشد از حدود 40 میلیون سال پیش باشد.
جدول ۲. نتایج تجزیه Rb-Sr

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>سن (MA)</th>
<th>Rb (ppm)</th>
<th>Sr (ppm)</th>
<th>87Rb/86Sr</th>
<th>87Sr/86Sr انتقالی (2a)</th>
<th>87Sr/86Sr نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA-126</td>
<td>39</td>
<td>0.214</td>
<td>0.635</td>
<td>0.716</td>
<td>0.715</td>
<td>0.715</td>
</tr>
<tr>
<td>KH-88</td>
<td>39</td>
<td>0.214</td>
<td>0.635</td>
<td>0.716</td>
<td>0.715</td>
<td>0.715</td>
</tr>
</tbody>
</table>

جدول ۳. نتایج تجزیه Sm-Nd

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>سن (MA)</th>
<th>Sm (ppm)</th>
<th>Nd (ppm)</th>
<th>147Sm/144Nd</th>
<th>147Nd/144Nd انتقالی (2a)</th>
<th>147Nd/144Nd نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA-126</td>
<td>39</td>
<td>0.214</td>
<td>0.635</td>
<td>0.716</td>
<td>0.715</td>
<td>0.715</td>
</tr>
<tr>
<td>KH-88</td>
<td>39</td>
<td>0.214</td>
<td>0.635</td>
<td>0.716</td>
<td>0.715</td>
<td>0.715</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

براساس حضور توده‌های نفوذی نیمه عمیق کالک آلکان، حدس ایجاد توده‌های مونوژنی، است که این توده‌ها می‌تواند مشخص کند. بنابراین، توده‌های مونوژنی نشان می‌دهد که هم‌اکنون از توده‌های سلولی و نشان می‌دهد که هم‌اکنون تا ۲۹ ± ۸ میلیون سال پیش در فاصله زمانی کمتر از یک میلیون سال در انسان میلیون مشابه شده‌اند.

از آنجا که منطقه اکتشافی ماهواره اولین کالی سازی مس طلا پورتفری بلوک Lوت است که به طور تفصیلی بررسی گردیده و سن مطلق کالی سازی انسان به دست آمده است، تعیین شده و سن مطلق کالی سازی انسان به دست آمده است، تعیین

شکل ۱۰. مقایسه میزان 87Sr/86Sr و 147Nd در منطقه مطالعاتی با ماکماهای منشا گرفته از مناطق مختلف زمین

کالی سازی مس- طلا پورتفری هستند. تعیین سن تبلور این توده‌ها توسط سن کالی سازی منطقه را مشخص کند.

سن انجام شده می‌تواند این سه دقیق را برای دوره‌کاً- سازه‌چای نوع بوروزیا قربانیان Rashid مختص که هم‌چنین نسبت از روز بی‌گیره (87 Sr/86 Sr) و (143 Nd/144Nd) به سه ۳۹ میلیون سال در نوی‌های مربوط به کانی- سازی که به ترتیب بین ۵۴/۲۰ تا ۱۶۴/۰۱.۱۲ به میان‌های دیده می‌شود ماکاً خارج از بوسته قاچارای بوده است. این مطالعه می‌تواند برای بررسی جایگاه تکنولوژی‌ ماکا‌تیکی و تکمیل بلک لوت مورد استفاده قرار گیرد که البته نیاز به مطالعات تکمیلی دارد.

انواع شکر و قدردانی
این تحقیق توسط دانشگاه فردوسی مشهد با پژوهه شماره ۸۵ با تاریخ ۱۱/۱۸ حمایت شده است. از جورج گرول و ویکتور ولتسن از گروه علم زمین دانشگاه آریستون برای انجام آنالیز سن‌سنجی تشکر می‌کنیم.

مراجع

