میان‌ بارهای سیال، کانی شناسی و شیمی‌ کانی ها در کانسار پورفیری-اپی ترمال ساری‌ گونی، استان کردستان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ژئوشیمی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

چکیده

کانسار طلای اپی­ترمال ساری­ گونی (داشکسن) در شمال­ خاور شهرستان قروه و میزبان سنگ­ های آتشفشانی میوسن میانی قرار دارد. این کانسار بین کمان ماگمایی ارومیه-دختر و پهنه دگرگونی سنندج-سیرجان واقع‌شده است. کانی­ سازی به­ صورت رگه­ ای و برشی و به ترتیب شامل پنج مرحله: 1) رگه-رگچه­ های کوارتز-سولفید-مگنتیت، 2) رگه­ های برشی کوارتز-تورمالین، 3 و 4) رگه­ های اپی­ترمال کوارتز-پیریت-استیبنیت-سولفید آرسنیک و 5) رگه­ های کوارتز-کلسیت-پیریت-گالن-اسفالریت-تتراهدریت است. شیمی تورمالین­ ها نشان می­ دهد که این کانی­ ها دارای منشأ گرمابی بوده و از نوع دراویت هستند. مرحله اول کانه­ زایی در بازه دمایی 320 تا 380 درجه سانتی­ گراد و شوری 35 تا 45 درصد وزنی معادل نمک طعام تشکیل‌ شده است. رگه­ های کوارتز-تورمالین برشی در یک بازه دمایی 203 تا 398 درجه سانتی­ گراد و شوری 43/31 تا 01/45 درصد وزنی معادل نمک طعام تشکیل شده­اند. رگه­ های مرحله سوم و پنجم به ­ترتیب در یک بازه دمایی 200 تا 339 و 165 تا 230 درجه سانتی­ گراد و شوری 70/1 تا 74/11 و 1 تا 20/7 درصد وزنی معادل نمک طعام تشکیل شده ­اند. نتایج شیمی­ کانی­ های سولفیدی نشان می­ دهد که در اثر کاهش دما و فشار طی اختلاط با سیالات جوی و رقیق ­شدگی، تغییرات شیمی سیال به­ طور سریع رخ‌داده و هم‌زمان با جانشینی­ های آرسنیک-آنتیموان در کانی­ های سولفید آرسنیک (رالگار و اورپیمنت)-استیبنیت، جانشینی طلا با آهن در پیریت نیز رخ‌داده و طلا در این رگه­ ها به­ صورت محلول جامد و انکلوزیون­ های ریز در  سوتی پیریت (پیریت دوده­ ای) تشکیل‌شده است.

کلیدواژه‌ها


Aghanabati, A., 2004. Geology of Iran. Geological Survey of Iran. Tehran, 586 pp. (in Persian)
Asadi, H.H., Voncken, J.H.L., Kühnel, R.A. and Hale M., 2000. Petrography, mineralogy and geochemistry of the Zarshuran Carlin-like gold deposit, northwest Iran. Mineralium Deposita, 35(7): 656–671.
Bagherpour, H., Mokhtari, M.A.A., Kouhestani, H., Nabatian, G. and Mehdikhani, B., 2020. Intermediate-sulfidation Style of Epithermal Base Metal (Ag) Mineralization at the Qoyjeh Yeylaq Deposit, SW Zanjan – IRAN. Journal of Economic Geology, 11)4(: 545–564. (in Persian with English abstract)
Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683–684.
Bonazzi, P., Lampronti, G.I., Bindi, L. and Zanardi, S., 2005. Wakabayashilite, [(As, Sb)6S9] [(As4S5]: Crystal structure, pseudosymmetry, twinning and revised chemical formula. American Mineralogist, 90(7): 1108–1114.
Boomeri, M., Biabangard, H. and Zeinadini, Z., 2019. Investigation of petrography, mineralogy and alteration of northern part of the Chahfiruzeh porphyry copper deposit, northwest of Shar-e-Babak, Kerman. Journal of Economic Geology, 11)1(: 57–80. (in Persian with English abstract)
Burt, D.M., 1989. Vector representation of tourmaline compositions. American mineralogist, 74(7–8): 826–839.
Cabri, L.J., Chryssoulis, S.L., De Villiers, J.P.R., Gilles La-amme, J.H. and Buseck, P.R., 1989. The nature of invisible gold in arsenopyrite. The Canadian Mineralogist, 27(3): 353–362.
Cathelineau, M., Boiron, M.C., Holliger, P., Marion, P. and Denis, M., 1989. Gold in arsenopyrites: crystal chemistry, location and state, physical and chemical conditions of deposition. In: R.R, Keays, W.R.H. Ramsay and D.I. Groves (Editors), The Geology of Gold Deposits. Economic geology monograph series, Economic Geology Publishing Co., USA, pp. 328–341.
Cepedal, A., Fuente, M.F. and Martin-Izard, A., 2008. Gold-bearing As-rich pyrite and arsenopyrite from the El Valle gold deposit, Asturias, Northwestern Spain. The Canadian Mineralogist, 46(1): 233–247.
Dickson, F.W., Radtke, A.S., Wiessberg, B.G. and Heropoulos, C., 1957. Solid solution of antimony, arsenic, and gold in stibnite (Sb2S3), orpiment (As2S3) and realgar (As2S2). Economic Geology, 70(3): 591–594.
Feleghari, H., 2014. Studies of alteration related to gold epithermal Sari Gunay ore deposit in the Kurdistan province using by Aster satellite, mineralogy and geochemistry evidences. M.Sc. thesis, Isfahan University of Technology, Isfahan, Iran, 123 pp.
Fleet, M.E., Chryssoulis, S.L., MacLean, P.J., Davidson, R. and Weisener, C.G., 1993. Arsenian pyrite from gold deposits; Au and As distribution investigated by SIMS and EMP and color staining and surface oxidation by XPS and LIMS. The Canadian Mineralogist, 31(1): 1–17.
Fleet, M.E. and Mumin, A.H., 1997. Gold-bearing arsenian pyrite andmarcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist, 82(1–2): 182–193.
Garnier, V., Malo, M., Dubé, B., Chagnon, A. and Beaudoin, G., 2007. Carlin-type gold mineralization at Saint-Andréde-Restigouche, Gaspé Peninsula (Québec). Canadian Appalachians. Mineralium Deposita, 42(6): 639–662.
Geranian, H., Tabatabaei, S.H, Asadi Harooni, H. and Mohamadi, A., 2015. Application of discrimination analysis and support vector machine methods for modelling in the epithermal gold deposits in Dashkasan area. Iranian Journal of Mining Engineering, 10(28): 53–65. (in Persian with English abstract)
Hawthorne, F.C. and Henry, D.J., 1999. Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11(2): 201–215.
Jankovic, S., 1997. The Carpatho–Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Mineralium Deposita, 32(5): 426–433.
Jankovic, S. and Petrascheck, W.E., 1987. Tectonics and metallogeny of the Alpine-Himalayan belt in the Mediterranean area and western Asia. Episodes, 10(3): 169–175.
Maanijou, M., Puyandeh, N., Sepahi, A.A. and Dadfar, S., 2015. Mapping of hydrothermal alteration of Dashkasan (Sari Gunay) epithermal gold mine using Aster sensor images and XRD analysis. Geosciences, 24 (95): 95–104. (in Persian with English abstract)
Maddox, L.M., Bancroft, G.M., Scaini, M.J. and Lorimer, J.W., 1998. Invisible gold: comparison of Au deposition on pyrite and arsenopyrite. American Mineralogist, 83(11–12): 1240–1245.
Manning, D.A.C., 1982. Chemical and morphological variation in tourmalines from the Hub Kapong batholith of Peninsular Thailand. Mineralogical Magazine, 45(337): 139–147.
Mehrabi, B., Alimohammadi, H., Farhadian Babadi, M. and Ghahramaninejad, F., 2016. Biogeochemical exploration in Sari Gunay gold deposit, Northwestern Iran. Geopersia, 6(2): 223–232.
Mehrabi, B., Yardley, B.W.D. and Cann, J.R., 1999. Sediment-hosted disseminated gold mineralization at Zarshuran, NW Iran. Mineralium Deposita, 34(7): 673–696.
Moradi, M., 2018. Mineralogy and gold geochemical distribution in the sulfide and oxide ores of the Dashkasan ore deposit (E Qorveh). M.Sc. thesis, University of Isfahan, Isfahan, Iran, 148 pp.
Nakai, I., Yokoi H. and Nagashima K., 1986. Crystal chemistry of the system As-Sb-S (I): Synthesis of wakabayashilite and synthetic study on the solid solution in the As2S3-Sb2S3 system. Mineralogical Journal, 13(4): 212–222.
Niroumand, SH., Rastad, E.,  Rashidnezhad Omran N. and Ghaderi, M., 2013. Geology and mineralization of the Dashkasan (Sari Gunay) epithermal gold deposit, Sanandaj-Sirjan zone, east of Qorveh, Kordestan province. Geosciences. 3(88): 30–41. (in Persian with English abstract)
Rastad, E., Niroumand SH. and Rashidnezhad Omran N., 2000. Genesis of SB-AS-AU deposit in volcano-plautonic complex of Dash-Kasan (east Qorveh, Kordestan province). Geosciences, 9(37–38): 2–23. (in Persian with English abstract)
Reynolds, M., 2001. Mineralogical characterization of arsenical gold ores from the Dashkasan deposit. Iran, RioTinto Technical Services, United Kingdom, Report BR3029, 43 pp.
Richards, J.P, Wilkinson, D. and Ullrich, T., 2006. Geology of the Sari Gunay epithermal deposit. Economic Geology, 101(8): 1455–1496.
Sack, R.O., Kuehner S.M. and Hardy, L.S., 2002. Retrograde Ag-enrichment in fahlores from the Coeur d’Alene mining district, Idaho, USA. Mineralogical Magazine, 66(1): 215–229.
Shepherd, T.J., Rankin, A.H. and Alderton, D.H., 1985. A Practical guide to fluid inclusion studies. Blackie and Sons, Glasgow, 239 pp.
Slack, J.F., Palmer, M.R., Stevens, B.P.J. and Barnes, R.G., 1993. Origin significance of tourmaline-rich rocks in the Broken Hill district, Australia. Economic Geology, 88(3): 505–541.
Sterner, S.M., Hall, D.L. and Bodnar, R.J., 1988. Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions: Geochimica et Cosmochimica Acta, 52(5): 989–1005.
Tindle, A.G., Breaks, F.W. and Selway, J.B., 2002. Tourmaline in petalite-subtype granitic pegmatites: evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada. The Canadian Mineralogist, 40(3): 753–788.
Trumbull, R.B. and Chaussidon, M., 1999. Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite- pegmatite system in Swaziland. Chemical Geology, 153(1–4): 125–137.
Vikentyev, I.V., 2015. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals. Geology of Ore Deposits, 57(4): 237–265.
Wilkinson, D.L., 2004. Sari Gunay (Formerly Dashkasan) gold project Kordestan Province, Iran. Zar Kuh Mining Company, Tehran, Annual Report 1, 52 pp.
Wilkinson, J.J., 2001. Fluid inclusion in hydrothermal ore deposits. Lithos, 55(1): 229–272.
Wu, X., Delbove, F. and Touray, J.C., 1990. Conditions of formation of gold-bearing arsenopyrite: a comparison of synthetic crystals with samples from Le ChaÃtelet gold deposit Creuse, France. Mineralium Deposita, 25(4): S8–S12.
Zarasvandi, A., Rezaei, M., Tashi, M., Fereydouni, Z. and Saed, M., 2019. Comparison of geochemistry and porphyry copper mineralization efficiency in granitoids of the Sanandaj-Sirjan and Urumieh-Dokhtar zones; using rare earth elements geochemistry. Journal of Economic Geology, 11)1(: 1–23. (in Persian with English abstract)
CAPTCHA Image