پتروژنز ماگماتیسم میان چینه ای تریاس شمال شهرضا بر مبنای شیمی کلینوپیروکسن (جنوب اصفهان، پهنه سنندج-‌سیرجان)

نوع مقاله : علمی- پژوهشی

نویسندگان

دانشگاه پیام نور

چکیده

کربنات­ های تریاس پیشین شمال شهرضا، میزبان 4 افق­ آذرین موازی میان­ چینه­ ای بازیک با ترکیب سنگ­ شناسی الیوین ­بازالت تا بازالت کوارتزدار هستند. این سنگ ­ها دارای بافت اینترسرتال تا اینترگرانولار بوده و پلاژیوکلاز، کلینوپیروکسن، الیوین، آمفیبول و کوارتز کانی‌های اصلی آنها را تشکیل می ­دهند. کلینوپیروکسن­ ها حاوی مقادیر بالایSiO2  و  MgO بوده و محتوای Al2O3 و Na2O  آنها پایین است. نسبت­ های متوسط AlVI/AlIV کلینوپیروکسن (05/0‌-‌01/0)، نشان‌دهنده تبلور ماگما در شرایط فشار متوسط است. دمای تبلور کلینوپیروکسن‌ها از 1150 تا 1200 درجه سانتی­ گراد متغیر است. بر اساس ویژگی­ های ژئوشیمیایی کلینوپیروکسن، ماهیت ماگمای سازنده تولئیتی و فوگاسیته اکسیژن در زمان تبلور نسبتاً پایین بوده ­­است. میان­ چینه ­ای بودن با رسوبات کربناته، تولئیتی‌بودن سرشت ماگمایی و ویژگی زمین ­ساختی پشته­ های میان­ ا­­­قیانوسی نشان‌دهنده ارتباط افق­ های آذرین با یک رژیم زمین ­ساختی کششی است. افق­ های بازیک مزبور احتمالاً از یک ماگمای تولئیتی و در یک رژیم زمین‌ساختی کششی کافت‌زایی که به گسترش پوسته اقیانوسی نئوتتیس در زمان تریاس آغازین در جنوب اصفهان انجامیده است، تشکیل شده ­اند.
.

کلیدواژه‌ها


Aghanabati, S.A., 2013. Magmatism in Iran. Roshd magazine, 18(4): 18–23. (in Persian)
Baghbani, D., 1993. The Permian sequence in the Abadeh region, Central Iran. In: A.E.M. Nairn and V.A.V. Koroteev (Editors), Contributions to Eurasian geology. Earth Sciences and Resources Institute, Russia, pp. 7–22.
Beccaluva, L., Macciotta, G., Piccardo, G.B. and Zeda, O., 1989. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chemical Geology, 77(3–4): 165–182.
Besse, J., Torq, F., Gallet, Y., Ricou, L.E., Krystyn, L. and Saidi, A., 1998. Late Permian to Late Triassic paleomagnetic data from Iran: constraints on the migration of the Iranian block through the Tethyan Ocean and initial destruction of Pangaea. Geophysical Journal International, 135(1): 77-–92.
Buddington, A.F and Lindsley, D.H., 1964. Iron-titanium oxides minerals and synthetic equivalents. Journal of Petrology, 5(2): 310–357.
Deer, W.A., Howie, R.A. and Zussman, J., 1992. An introduction to the Rock-Forming Minerals. Longman, London, 696 pp.
Falahaty, S., Noghreyan, M., Sharifi, M., Torabi, Gh., Safaei, H. and Mackizadeh, M.A. 2016. Clinopyroxene application in petrogenesis identification of volcanic rocks associated with salt domes from Shurab Southeast Qom). Journal of Economic Geology, 8(1): 21–38. (in Persian with English abstract)
Foley, S.F. and Venturelli, G., 1989. High K2O rocks with high MgO, High SiO2 affinities. In: A.J. Crawford (Editor), Boninites and related rocks. Unwin Hyman, London, pp. 72–88.
France, L., Ildefonse, B., Koepke, J. and Bech, F., 2010. A new method to estimate the oxidation state of basaltic series from microprobe analyses. Journal of Volcanology and Geothermal Research, 189(3–4): 340–346.
Helz, R.T., 1973. Phase relations of basalts in their melting range at PH2O= 5 kb as a function of oxygen fugacity. Journal of Petrology, 17(2): 139–193.
Heydari, E., Arzani, N. and Hassanzadeh, J., 2008. Mantle plume: The invisible serial killer ‐Application to the Permian‐Triassic boundary mass extinction. Palaeogeography, Palaeoclimatology and Palaeoecology, 264(1–2): 147–162.
Horacek, M., Richoz, S., Brander, R., Krystyn, L. and Spötl, Ch., 2007. Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: The δ13C record from marine sections in Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1–2): 355–369.
Korte, C., Kozur, H.W. and Mohtat-Aghai, P., 2004. Dzhulfian to lowermost Triassic d13C record at the Permian/Triassic boundary section at Shahreza, Central Iran. Hallesches Jahrbuch für Geowissenschaften – Beihefte, 18(1): 73–78.
Le Bas, N.J., 1962. The role of aluminous in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260(4): 267–88.
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G., 1997. Nomenclature of amphiboles, report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. American Mineralogist, 82(9–10): 1019–1037.
Leterrier, J., Maury, R.C., Thonon, P., Girard, D. and Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters, 59(1): 139–154.
Liu, T.C., Chen, B.R. and Chen, C.H. 2000. Melting experiment of a Wannienta basalt in the Kuanyinshan area, northern Taiwan, at pressures up to 2.0 GPa. Journal of Asian Earth Sciences, 18(5): 519–531.
Malgarotto, C., Molin, G. and Zanazzi, F., 1993. Crystal chemistry of clinopyroxenes from Filicudi and Salina (Aeolian Islands, Italy): geothermometry and barometry. European Journal of Mineralogy, 5(5): 915–923.
Mehvari, R., Noghreyan, M., Sharifi, M., Mackizadeh, M.A., Tabatabaei, S.H. and Torabi, Gh., 2017. Mineral chemistry of clinopyroxene: guidance on geo- thermobarometry and tectonomagmatic setting of Nabar volcanic rocks, South of Kashan. Journal of Economic Geology, 8(2): 493–506. (in Persian with English abstract)
Moretti, R., 2005. Polymerization, basicity, oxidation state and their role in ionic modelling of silicate melts. Geophysics, 48(4–5): 583–608.
Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K. and Gottardi, D., 1988. Nomenclature of pyroxenes. American Mineralogist, 73(9–10): 1123–1133.
Nazzareni, S., Molin, G., Peccerillo, A. and Zanazzi, P.F., 2001. Volcanological implications of crystal-chemical variations in clinopyroxenes from the Aeolian Arc, Southern Tyrrhenian Sea (Italy). Bulletin of Volcanology, 63(1): 73–82.
Nisbet, E.G. and Pearce, J.A., 1977. Clinopyroxene composition of mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology, 63(2): 161–173.
Richoz, S., Krystyn, L., Baud, A., Brandner, R., Horacek, M. and Mohtat-Aghai, P., 2010. Permian-Triassic boundary interval in the Middle East (Iran and N. Oman): Progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution. Journal of Asian Earth Sciences, 39(4): 236–253.
Sayari, M. and Sharifi, M., 2016. Application of clinopyroxene chemistry to interpret the physical conditions of ascending magma, a case study of Eocene volcanic rocks in the Ghohrud area (North of Isfahan). Journal of Economic Geology, 8(1): 61–78. (in Persian with English abstract)
Schweitzer, E.L., Papike, J.J. and Bence, A.E., 1979. Statitical analysis of clinopyroxenes from deep sea basalts. American Mineralogist, 64(2): 501–513.
Şengör, A.M.C., 1984. The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society of America, Special paper, America, 82 pp.
Shelly, D., 1993. Igneous and Metamorphic Rocks under the Microscope. Chapman and Hall, London, 445 pp.
Shirezadeh Esfahani, F., Kohansal Ghadimvand, N., Kangazian, A., Hejazi, S.H. and Hairapetian, V., 2006. The new data on the lithostratigraphic subdivision of the Vazhnan formation (Latest Carboniferous-Early Permian) in the Shahreza-Abadeh belt. Scientific Quarterly Journal, GEOSCIENCES, 25(99): 3–10. (in Persian with English abstract)
Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallization P-T estimations. Geological Society of Sweden (Geologiska Föreningen), 119(1): 55–60.
Stampli, G.M. and Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 196(1–2): 17–33.
Tabatabaei, S.H., Tabaei, M., Mansouri Esfahani, M. and Asadi Haroni, H., 2014. Geological, Mineralogical and Geochemical Characteristics of Titanium Deposit in Cheshmeh Siah Shahreza, Isfahan. Geochemistry, 3(3): 235–246.
Tabbakh Shabani, A.A., Delavari Kooshan, M. and Hajiabdolrahim Khabbaz, M., 2017. Geochemistry and mineral chemistry of zeolites bearing basic volcanic rocks from the Boumehen-Roudehen area, east of Tehran. Journal of Economic Geology, 9(2): 397–418. (in Persian with English abstract)
Taraz. H., 1971. Uppermost Permian and Permo-Triassic transition beds in Central Iran. AAPG Bulletin. 55(8): 1280–1294.
Taraz, H., 1974. Geology of the Surmaq-Deh Bid area, Abadeh region, Central Iran. Geological Survey of Iran, Iran, Report 37, 148 pp.
Taraz, H., Golshani, F., Nakazawa, K., Shimizu, D., Bando, Y., Ishii, K., Murata, M., Okimura, Y., Sakagami, S., Nakamura, K. and Tokuoka, T., 1981. The Permian and the Lower Triassic systems in Abadeh region, Central Iran. Memoirs of the Faculty of Science, Kyoto University. Series of Geology and Mineralogy, 47(2): 61–133.
Wass, S.Y., 1979. Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos, 12(2): 115–132.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187
Zahedi, M., 1976. Geological map of Shahreza, scale 1:100000. Geological Survey of Iran, Iran.
Zhu, Y.F. and Ogsasawara, Y., 2004. Clinopyroxene phenocrysts (with green salite cores) in trachybasalts: implications for two magma chambers under the Kokche NAPV UHP massif, North Kazakhstan. Journal of Asian Earth Sciences, 22(5): 517–527.
CAPTCHA Image