رهیافت دانش‌ محور در اکتشاف ذخایر روی و سرب با سنگ میزبان کربناته، مطالعه موردی: قلمرو معدنی شمال ایرانکوه، اصفهان، ایران

نوع مقاله : علمی- پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

برای معرفی الگوی اکتشافی بر اساس روش دانش‌محور در مقیاس قلمرو معدنی، ژئومتری، کانی‌شناسی، جایگاه ساختمانی، سنگ میزبان، ساختار داده‌های ژئوشیمیایی و دامنه تغییرات شارژپذیری از بررسی‌های ژئوفیزیکی در پنج ذخیره شناخته‌شده روی و سرب سولفیدی در یال شمالی ایرانکوه شامل گوشفیل، زون 1 گوشفیل، مدفون، تپه‌سرخ و زون 5 رومرمر مورد تحلیل و بررسی قرار‌‌گرفته ‌است. رژیم تشکیل روی و سرب در طی دو یا چند دوره مختلف نهشته‌شدن ذخایر روی و سرب به‌‌همراه یکدیگر و یا سرب به‌صورت جداگانه را موجب‌شده ‌است که در این میان رژیم سرب از حجم و توسعه کمتری برخوردار بوده ‌است. مقدار پیریت متأثر از دمای تشکیل، از 2 تا 20 درصد در ذخایر مختلف تغییر می‌کند که به‌همراه ژئومتری و عمق وجود ذخیره بر دامنه تغییرات داده شارژپذیری به‌طور آشکاری تأثیر می‌گذارد. گستره وسیعی از منطقه تحت‌تأثیر حجم زیادی از محلول هیدروترمال قرار‌گرفته ‌است که در نتیجه عملکرد این محلول‌ها، دولومیتی‌شدن به‌صورت انتخابی در واحد چینه‌ای زیرین به نسبت سایر واحدهای چینه‌ای توسعه عمقی بیشتری نشان می‌دهد. با وصف این آثار کانی‌سازی سطحی در تمام افق‌های دولومیتی در سطح گسترده‌ای مشاهده می‌شوند که به دو دسته فرعی و اصلی تقسیم می‌شوند. در نتیجه تعدد زون‌های کانی‌سازی در هاله ژئوشیمیایی ثانویه، عناصر انشعاب‌یافته از کانه‌های اصلی سولفیدی و عناصر نشأت‌گرفته از سنگ میزبان، ناهنجاری‌های کاذب و واقعی گسترده و متعددی را به نمایش می‌گذارند. افزایش همگام عناصر اصلی شامل روی و سرب به‌همراه عناصر ردیاب نظیر نقره، کادمیوم، آنتیموان، آرسنیک، مس و عناصر نشأت‌گرفته از سنگ میزبان شامل منیزیوم، آهن و کلسیم به‌عنوان ناهنجاری مستعد معرفی می‌شود. در مقابل در مناطق ناهنجاری بی‌اهمیت، افزایش عناصر اصلی و ردیاب با کاهش نسبی عناصر کلسیم، منیزیوم و آهن روبرو‌ست.

کلیدواژه‌ها


Agterberg, F.P., 1974. Geomathematics. Elsevier, Amsterdam, 596 pp.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3–4): 211–238.
Anderson, G. and Macqueen, R., 1982. Ore deposit models-6, Mississippi Valley-type lead-zinc deposits. Geoscience Canada, 9(2):107–117.
Anderson, G.M., 1983. Some geochemical aspects of sulfide precipitation in carbonate rocks. International Conference on Mississippi Valley Type Lead-Zinc Deposits. University of Missori, Missouri, United States of America.
Bayati, M., Esmaeily, D., Maghdour-Mashhour, R., Li, X.H. and Stern, R.J., 2017. Geochemistry and petrogenesis of Kolah-Ghazi granitoids of Iran: Insights into the Jurassic Sanandaj-Sirjan magmatic arc. Chemie der Erde-Geochemistry, 77(2): 281–302.
Berberian, M. and King, G., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265.
Bishop, J. and Emerson, D., 1999. Geophysical properties of zinc‐bearing deposits. Australian Journal of Earth Sciences, 46(3): 311–328.
Bladh, K.W., 1982. The formation of goethite, jarosite, and alunite during the weathering of sulfide-bearing felsic rocks. Economic Geology, 77(1): 176–184.
Bouabdellah, M., Brown, A.C. and Sangster, D., 1996. Mechanisms of formation of internal sediments at the Beddiane lead-zinc deposit, Touissit mining district, northeastern Morocco. In: D. Sangster (Editor), Carbonate-hosted lead-zinc deposits. The Society of Economic Geologists, United States of America, pp. 356–363.
Boveiri-Konari, M. and Rastad, E., 2018. Nature and origin of dolomitization associated with sulphide mineralization: new insights from the Tappeh Sorkh Zn‐Pb (‐Ag‐Ba) deposit, Irankuh Mining District, Iran. Geological Journal, 53(1): 1–21.
Boveiri-Konari, M., Rastad, E. and Peter, J.M., 2017. A sub-seafloor hydrothermal syn-sedimentary to early diagenetic origin for the Gushfil Zn-Pb-(Ag-Ba) deposit, south Esfahan, Iran. Journal of Mineralogy and Geochemistry, 194(1): 61–90.
Boyle, D.R., 1994, Oxidation of massive sulfide deposits in the Bathurst mining camp, New Brunswick: Natural analogues for acid drainage in temperate climates. In: C.N. Alpers and D.W. Blowes (Editors), Environmental Geochemistry of Sulfide Oxidation. American Chemical Society Symposium Series, United States of America , pp. 535–550.
Callahan, W., 1977. The history of the discovery of the zinc deposit at Elmwood, Tennessee, concept and consequence. Economic Geology, 72(7): 1382–1392.
Carranza, E.J.M. and Hale, M., 2003. Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(1–2): 117–132.
Cohen, D., Kelley, D., Anand, R. and Coker, W., 2010. Major advances in exploration geochemistry, 1998–2007. Geochemistry: Exploration, Environment, Analysis, 10(1): 3–16.
Corbella, M., Ayora, C. and Cardellach, E., 2004. Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits. Mineralium Deposita, 39(3): 344–357.
Cox, D.P. and Singer, D.A., 1986. Mineral deposit models. United States Geological Survey Bulletin, United States of America, 379 pp.
Esmaeili-Sevieri, A., Karimpour, M.H., Malekzadeh-Shafaroudi, A. and Mahboubi, A., 2018. Consideration on Exploration of Carbonate Hosted Zinc and Lead Deposits in Irankuh, Introducing Zone 5 Romarmar Mine. 10th Symposium of Iranian Society of Economic Geology, Isfahan University, Isfahan, Iran. (in Persian with English abstract)
Feltrin, L., 2008. Predictive modelling of prospectivity for Pb–Zn deposits in the Lawn Hill Region, Queensland, Australia. Ore Geology Reviews, 34(3): 399–427.
Foley, N.K., Plumlee, G. and Smith, K., 2002. Environmental geochemistry of platform carbonate-hosted sulfide deposits. In: R.R. Seal and N.K. Foley (Editors), Progress on Geoenvironmental Models for Selected Mineral Deposit Types. United States Geological Survey, United States of America, pp. 87–100.
Förster, H., 1978. Mesozoic–cenozoic metallogenesis in Iran. Journal of the Geological Society, 135(4): 443–455.
Ghazban, F., McNutt, R.H. and Schwarcz, H.P., 1994. Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west-central Iran. Economic Geology, 89(6): 1262–1278.
Grigorian, S.V. and Adamyan, A., 2008a. Geochemical Assessment of Geochemical Anomalies’ Ore Potential of Gushfil Area. Bama Mining Company, Isfahan, Report 1, 35 pp.
Grigorian, S.V. and Adamyan, A., 2008b. Geochemical assessment of Ore Potential of Tapeh Sorkh Area (Final report). Bama Mining Company, Isfahan, Report 2, 24 pp.
Grunsky, E.C., 2010. The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis, 10(1): 27–74.
Hitzman, M. and Beaty, D., 1996. The Irish Zn-Pb-(Ba) orefield. In: D.F. Sangster (Editor), Carbonate-hosted lead-zinc deposits. Society of Economic Geologists, United States of America, pp. 112–143.
Hitzman, M.W., 1992, Discovery of the Lisheen Zn-Pb-Ag deposit, Ireland. Economic Geology, 9(1): 12–15.
Hitzman, M.W., Reynolds, N.A., Sangster, D., Allen, C.R. and Carman, C.E., 2003. Classification, genesis, and exploration guides for nonsulfide zinc deposits. Economic Geology, 98(4): 685–714.
Hosseini-Dinani, H. and Aftabi, A., 2016. Vertical lithogeochemical halos and zoning vectors at Goushfil Zn–Pb deposit, Irankuh district, southwestern Isfahan, Iran: Implications for concealed ore exploration and genetic models. Ore Geology Reviews, 150(6): 1004–1021.
Hosseini-Dinani, H., Aftabi, A., Esmaeili, A. and Rabbani, M., 2015. Composite soil-geochemical halos delineating carbonate-hosted zinc–lead–barium mineralization in the Irankuh district, Isfahan, west-central Iran. Journal of Geochemical Exploration, 156(1): 114–130.
Karimpour, M.H., Malekzadeh Shafaroudi, A., Alaminia, Z., Esmaeili Sevieri, A. and Stern, C.R., 2019. New hypothesis on time and thermal gradient of subducted slab with emphasis on dolomitic and shale host rocks in formation of Pb-Zn deposits of Irankuh-Ahangaran belt. Journal of Economic Geology, 10(2): 677–706. (in Persian with English abstract)
Karimpour, M.H., Malekzadeh Shafaroudi, A., Esmaeili Sevieri, A., Allaz, J.M. and Stern, C.R., 2017. Geology, mineralization, mineral chemistry, and ore-fluid conditions of Irankuh Pb-Zn mining district, south of Isfahan. Journal of Economic Geology, 9(2): 267–294. (in Persian with English abstract)
Karimpour, M.H. and Sadeghi, M., 2018. Dehydration of hot oceanic slab at depth 30–50 km: KEY to formation of Irankuh-Emarat PbZn MVT belt, Central Iran. Journal of Geochemical Exploration. 194(1): 88–103.
Kimiaghalam, J., Joabadi, A. and Shahin, E., 1987. Report on complementray geophysical study, IP/RS, on northern flank of Irankuh Mountain, Romarmar, Tapeh Sorkh and Gardaneh. Bama Mining Company, Isfahan, Report 1, 22 pp.
Kimiaghalam, J. and Kimiaghalam, J., 1981. Report on Geophysical Exploration, IP/RS in Irankuh Mine. Bama Mining Company,
Isfahan, Report 2, 40 pp.
Kimiaghalam, J. and Kimiaghalam, J., 1988. Report on Geophysical Exploration Study, IP/RS, Kolah Darvazeh- Tapeh Sorkh. Bama Mining Company, Isfahan, Report 3, 9 pp.
Kimiaghalam, J. and Nicholas, H., 1982. Report on Geophysical exploration study, IP/RS, in Southern flank of Irankuh Mountain. Bama Mining Company, Isfahan, Report 4, 8 pp.
Lavery, N., Leach, D. and Saunders, J., 1994. Lithogeochemical investigations applied to exploration for sediment-hosted lead-zinc deposits. In: L. Fontbote and M. Boni (Editors), Sediment-hosted Zn-Pb Ores. Springer, New York, pp. 393–428.
Leach, D.L., Plumlee, G.S., Hofstra, A.H., Landis, G.P., Rowan, E.L. and Viets, J.G.,1991. Origin of late dolomite cement by CO2-saturated deep basin brines: Evidence from the Ozark region, central United States. Geology, 19(4): 348–351.
Leach, D.L., Taylor, R.D., Fey, D.L., Diehl, S.F. and Saltus, R.W., 2010. A deposit model for Mississippi Valley-type lead-zinc ores. United States Geological Survey, Virginia, Report 2, 64 pp.
Leach, D.L., Viets, J.G., Foley-Ayuso, N. and Klein, D.P., 1995. Mississippi Valley-type Pb-Zn deposits. United States Geological Survey, Virginia, Report 2, 10 pp.
Levinson, A.A., 1974. Introduction to exploration geochemistry. Applied Publishing Ltd. Wilmette, Illinois, United States of America, 614 pp.
Lydon, J.W., 1995. Sedimentary exhalative sulphides (SEDEX). In: O.R. Eckstrand, W.D. Sinclair and R.I. Thorpe (Editors), Geology of Canadian mineral deposit types. Geological Survey of Canada, Canada, pp. 130–152.
Machel, H.G. and Lonnee, J., 2002. Hydrothermal dolomite–A product of poor definition and imagination. Sedimentary Geology, 152(3–4): 163–171.
Marie, J.S. and Kesler, S.E., 2000. Iron-rich and iron-poor Mississippi Valley-type mineralization, Metaline district, Washington. Economic Geology, 95(5): 1091–1106.
Marie, J.S., Kesler, S.E. and Allen, C.R., 2001. Origin of iron-rich Mississippi Valley–type deposits. Geology, 29(1): 59–62.
Maynard, J.B., 1983. Geochemistry of sedimentary ore deposits. Springer, New York, 306 pp.
Mirnejad, H., Simonetti, A. and Molasalehi, F., 2011. Pb isotopic compositions of some Zn–Pb deposits and occurrences from Urumieh–Dokhtar and Sanandaj–Sirjan zones in Iran. Ore Geology Reviews, 39(4): 181–187.
Mohajjel, M. and Fergusson, C.L., 2000. Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Structural Geology, 22(8): 1125–1139.
Momenzadeh, M., 1976. Stratabound lead-zinc ores in the lower Cretaceous and Jurassic sediments in the Malāyer-Esfahan district (west central Iran): lithology, metal content, zonation and genesis. Ph.D. Thesis, Heidelberg University, Heidelberg, Germany, 300 pp.
Nakini, A., Mohajjel, M., Rastad, E. and Boveiri, M., 2016. Folding and Faulting in Irankuh Mine Area, Isfahan. Kharazmi Journal of Earth Sciences, 1(2): 235–254.
Nordstrom, D.K. and Southam, G., 1997. Geomicrobiology of sulfide mineral oxidation. Reviews in Mineralogy, 35(2): 361–390.
Ohle, E.L., 1959. Some considerations in determining the origin of ore deposits of the Mississippi Valley type. Economic Geology, 54(5): 769–789.
Ohle, E.L., 1980. Some considerations in determining the origin of ore deposits of the mississippi valley type; Part II. Economic Geology, 75(2): 161–172.
Ohle, E.L., 1985. Breccias in Mississippi Valley-type deposits. Economic Geology, 80(6): 1736–1752.
Paradis, S., Hannigan, P. and Dewing, K., 2007. Mississippi Valley-type lead-zinc deposits. In: W.D. Goodfellow (Editor), Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Calgary, pp 185–203.
Radke, B.M. and Mathis, R.L., 1980. On the formation and occurrence of saddle dolomite. Journal of Sedimentary Research, 50(4): 1149–1168.
Rajabi, A., Rastad, E. and Canet, C., 2012. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. International Geology Review, 54(14): 1649–1672.
Rastad, E., 1981. Geological, Mineralogical, and Ore Facies Investigations on the Lower Cretaceous Stratabound Zn-Pb (Ba-Cu-) Deposits of the Irankuh Mountain Range, Esfahan, West Central Iran. Ph.D. Thesis, Heidelberg University, Heidelberg, Germany, 334 pp.
Ravenhurst, C.E., Reynolds, P.H., Zentilli, M., Krueger, H.W. and Blenkinsop, J., 1989. Formation of Carboniferous Pb-Zn and barite mineralization from basin-derived fluids, Nova Scotia, Canada. Economic Geology, 84(6): 1471–1488.
Reichert, J., 2007. A metallogenetic model for carbonate-hosted non-sulphide zinc deposits based on observations of Mehdi Abad and Irankuh, Central and Southwestern Iran. Ph.D. Thesis, Martin Luther University Halle Wittenberg, Halle, Germany, 152 pp.
Reimann, C. and De Caritat, P., 2012. Chemical elements in the environment: factsheets for the geochemist and environmental scientist. Springer-Verlag, Berlin, 403 pp.
Reimann, C., Filzmoser, P. and Garrett, R.G., 2005. Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346(1–3): 1–16.
Reimann, C. and Garrett, R.G., 2005. Geochemical background—concept and reality. Science of the Total Environment, 350(1–3): 12–27.
Sangameshwar, S. and Barnes, H., 1983. Supergene processes in zinc-lead-silver sulfide ores in carbonates. Economic Geology, 78(7): 1379–1397.
Sangster, D., 1995. Mississipi Valley-Type Lead-Zinc. In: O.R. Eckstrand, W.D. Sinclair and R.I. Thorpe (Editors), Geology of Canadian Mineral Deposit Types. Geological Survey of Canada, Canada, pp. 253–261.
Sass-Gustkiewicz, M., Dzulynski, S. and Ridge, J.D., 1982. The emplacement of zinc-lead sulfide ores in the Upper Silesian District; a contribution to the understanding of mississippi valley-type deposits. Economic Geology, 77(2): 392–412.
Şengör A., 1990. A new model for the late Palaeozoic-Mesozoic tectonic evolution of Iran and implications for Oman. In: A.H.F. Robertson, M.P. Searle and A.C. Ries (Editors), The Geology and Tectonics of Oman Region. The Geological Society, London, pp. 797–831.
Stocklin, J., 1968. Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7): 1229–1258.
Sumner, J.S., 1976. Principles of induced polarization for geophysical exploration. Elsevier, New York, 165 pp.
Takahashi, T., 1960. Supergene alteration of zinc and lead deposits in limestone. Economic Geology, 55(6): 1083–1115.
Tompkins, L.A., Pedone, V.A., Roche, M.T. and Groves, D.I., 1994. The Cadjebut Deposit as an example of mississippi valley-type mineralization on the Lennard Shelf, Western Australia; single episode or multiple events? Economic Geology, 89(3): 450–466.
Velasco, F.H., Herrero, J.M., Yusta, I.a., Alonso, J.A., Seebold, I. and Leach, D., 2003. Geology and geochemistry of the Reocin zinc-lead deposit, Basque-Cantabrian basin, Northern Spain. Economic Geology, 98(7): 1371–1396.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187.
Williams, P.A., 1990. Oxide zone geochemistry. Ellis Horwood Limited, England, 286 pp.
YingChao, L., Song, Y., Fard, M., Zhou, L., Hou, Z. and Kendrick, M.A., 2019. Pyrite Re-Os age constraints on the Irankuh Zn-Pb deposit, Iran, and regional implications. Ore Geology Reviews, 104(1): 148–159.
Yingchao, L. Yucai, S., Zengqian, H., Zhusen, Y., Hongui, Z. and Wang, M., 2015. The Malayer­Esfahan Carbonate­Hosted Pb­Zn Metallogenic Belt in the Zagros Collisional Orogen of Iran: Characteristics and Genetic Types. Acta Geologica Sinica, 89(9): 1595–1606.
Zahedi, M., 1976. Explanatory Text of the Esfahan Quadrangle Map: 1: 250.000; Geological Quadrangle F8. Geological Survey of Iran.
Zekri, H., Cohen, D.R., Mokhtari, A.R. and Esmaeili, A., 2019a. Geochemical Prospectivity Mapping Through a Feature Extraction–Selection Classification Scheme. Natural Resources Research, 28(3) 849–865.
Zekri, H., Mokhtari, A.R. and Cohen, D.R., 2019b. Geochemical pattern recognition through matrix decomposition. Ore Geology Reviews, 104(3): 670–685.
CAPTCHA Image