ژئوشیمی، سیالات درگیر و ایزوتوپ های گوگرد در کانی سازی طلای نوع برش هیدروترمالی، منطقه خونیک، استان خراسان جنوبی

نوع مقاله : علمی- پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه تربیت مدرس

3 مجتمع آموزش عالی گناباد

چکیده

منطقه اکتشافی خونیک در 106 کیلومتری جنوب شهرستان بیرجند در استان خراسان جنوبی واقع‌شده است. کانی­‌سازی خونیک از نوع طلای مرتبط با برش هیدروترمالی است. این کانی­‌سازی در ارتباط با توده‌­های نیمه­‌عمیق گرانیتوئیدی به سن 4/38 میلیون سال است. زون‌های دگرسانی رخنمون‌یافته در این منطقه در ارتباط با توده­‌های نیمه‌عمیق هستند و شامل دگرسانی­‌های پروپیلیتیک، آرژیلیک، برش هیدروترمال و کربناته است. کانی­‌سازی در بخش مرکزی منطقه و به‌صورت پراکنده، رگچه‌­ای و برش هیدروترمالی رخنمون دارد و در ارتباط با توده­‌های نیمه­‌عمیق ائوسن است. بخش مهمی از کانی­‌سازی در زون برش هیدروترمالی قرار دارد. بر اساس داده‌­های ژئوشیمی برداشت‌شده از گمانه­‌های حفاری، میزان عنصر طلا از 300 تا 4280 میلی­‌گرم بر تن تغییر می­‌کند و بیشترین میزان پراکندگی آن با توده­‌های نیمه‌عمیق به‌شدت دگرسان‌شده با کوارتز+‌سریسیت+‌پیریت‌±‌‌تورمالین و زون برش هیدروترمالی انطباق دارد. برش هیدروترمالی به‌طور کلی از نوع موزائیکی تا رابل است. بر اساس کانی­‌شناسی سیمان نیز دو نوع برش با سیمان کربناتی و سیمان کربنات-‌کوارتز مشاهده شد. دماسنجی بر روی سیالات درگیر اولیه دوفازی (L+V) موجود در سیمان زون برشی بیانگر تشکیل این نوع کانی­‌سازی در دمای حدود 300 تا 430 درجه سانتی‌گراد از سیالی با شوری متوسط (2 تا 12 درصد وزنی معادل نمک طعام) است. مقدار متوسط δ34S برای قطعات و سیمان برش هیدروترمالی به‌ترتیب 4/2 – و ‰ 9/0 است که نشان‌دهنده منشائی ماگمایی برای گوگرد در مرحله قبل و بعد از برشی‌شدن است.

کلیدواژه‌ها


Abdi, M., Karimpour, M.H. and Najafi, A., 2010. Geology, alteration and mineralization ‎potential of Kuh-Shah region, South Khorasan. First Symposium of Iranian Society of ‎Economic Geology, Ferdowsi University of Mashhad, Mashhad, Iran. (in Persian with English abstract)
Abdi, M. and Karimpour, M.H., 2012. Geology, alteration, mineralization, petrogenesis, geochronology, geochemistry and airborne geophysics of Kuh Shah prospecting area, SW Birjand. Journal of Economic Geology, 4(1): 77–107. (in Persian with English abstract).
Andrew, G.S.D., Cook, D. and Gemmel, J.B., 2008. Hydrothermal breccias and veins at the Kelian gold mine, Kalimantan, Indonesia: Genesis of a large epithermal gold deposit. Economic Geology, 103(4): 717–757.
Arjmandzadeh, R., 2011. Mineralization, geochemistry, geochronology, and ‎determination of tectonomagmatic setting of intrusive rocks in Dehsalm and Chahshaljami ‎prospect areas, Lut Block, eastern Iran. Ph.D. thesis, Ferdowsi University of Mashhad, Mashhad, Iran, ‎‎215 pp. (in Persian) ‎
Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J.M. and Homam, S.M., 2011. Sr–Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, eastern Iran). Journal of Asian Earth Sciences, 41‌(3): 283–296.
Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683–684.
Borna, B., Kargar, S. and Fazli, T., 2013. Final reports of project: Public exploration of gold in Khunik area, Khusf, Khorasan jonoubi. Pars Kaneh Kish Company, Tehran, Final report, 388 pp. (in Persian)
Brown, P.E. and Lamb, W.M., 1989. P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies. Geochimica et Cosmochimica Acta, 53(6): 1209–1221.
Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 21(7): 767–780.
Chaussidon, M. and Lorand, J.P., 1990. Sulphur isotope composition spinel lerzolite massifs from Ariege (N.E. Pyrenees. France): An ion microprobe study. Geochimical et Cosmochimical Acta, 54(10): 2835–2846.
Chen, Y.J., Pirajno, F., Li, N., Guo, D.Sh. and Lai, Y., 2009. Isotope systematica snd fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling orogen, Henan province, China: Implication for ore genesis. Ore Geology Reviews, 35(2): 245–261.
Davis, D.W., Lowenstein, T.K. and Spencer, R.J., 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O, and NaCl–CaCl2–H2O. Geochimica et Cosmochimica Acta, 54(3): 591–601.
Eftekhar-Nezhad, J. and Stocklin, J., 1992. Geological map of Iran sheet K8 (Birjand), scale 1:250,000. Geological Survey of Iran, Tehran.
Hedenquist, J.W., Arribas, A. and Reynolds, T.J., 1998. Evolution of an intrusion centered hydrothermal system: Far Southeast–Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 373–404.
Hoefs, J., 2004. Stable isotope geochemistry. Spinger-Verlag, Berlin, 244 pp.
Jebrak, M., 1997. Hydrothermal breccias in vein-type ore deposits; a review of mechanisms, morphology and size distribution. Ore Geology Reviews, 12(3): 111–134.
Karimpour, M.H., Malekzadeh Shafaroudi, A., Farmer, G.L. and Stern, C.R., 2012. Petrogenesis of granitoids, U-Pb zircon geochronology, Sr-Nd isotopic characteristics, and important occurrence of Tertiary mineralization within the Lut Block, eastern Iran. Journal of Economic Geology, 4(1): 1–28. (in Persian with English abstract)
Karimpour, M.H., Malekzadeh Shafaroudi, A., Mazaheri, S.A. and Haidarian Shahri, M.H., 2007. Magmatism and different types of mineralization in Lut Block. 15th Symposium of Iranian Society of Crystallography and Mineralogy, Ferdowsi University of Mashhad, Mashhad, Iran. (in Persian with English abstract)
Karimpour, M.H. and Saadat S., 2002. Applied economic geology. Mashhad publishing, Mashhad, 535 pp.
Karimpour, M.H., Zaw, K. and Huston, D.L., 2005. S-C-O isotopes, fluid inclusion microthermometry, and the genesis of ore bearing fluids at Qaleh-Zari Fe-oxide Cu-Au-Ag mine, Iran. Journal of Sciences, Islamic Republic of Iran, 16(2): 153–168.
Kouzmanov, K. and Ramboz, C., 2003. Stable isotopic constrains on the origin of epithermal Cu-Au and related porphyry copper mineralizations in the southern Panagyurishte district, Srednogorie zone, Bulgaria. In: Eliopoulos, D.G. (Editor), Mineral Exploration and Sustainable Development. Millpress, Rotterdam, pp. 1181–1184.
Large, R.R., Huston, D., McGoldrick, P. and Tuxton, P.A., 1992. Gold distribution and genesis in Australian volcanogenic massive sulfide deposits and their significance for gold transport models. In: R. Reid, W. Keays, W.R.H. Ramsay and J.D. Groves (Editors), The geology of gold deposits, the perspective in 1988. Society of Economic Geologists, Yale Station, USA, pp. 509–520.
Lattanzi, P., 1991. Applications of fluid inclusions in the study and exploration of mineral deposits. Europian Journal of Mineralogy, 3(4): 689–701.
Malekzadeh Shafaroudi, A., Karimpour, M.H. and Mazaheri, S.A., 2010. Rb-Sr and Sm-Nd isotopic composition and petrogenesis of ore-related intrusive rocks of gold–rich porphyry copper Maherabad prospect area (north of Hanich), east of Iran. Iranian Journal of Crystallography and Mineralogy, 18(2): 15–32. (in Persian with English abstract)
Malekzadeh Shafaroudi, A., Karimpour, M.H. and Stern, C.R., 2015. The Khopik porphyry copper prospect, Lut Block, Eastern Iran. Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies. Ore Geology Reviews, 65(2): 522–544.
Mason, B. and Moore, C.B., 1982. Principles of Geochemistry. John Wiley & Sons, New York, 344 pp.
Moritz, R., Jackquat, S., Chambefort, I. and Fontignie, D., 2003. Controls on ore formation at high sulfidation Au–Cu Chelopech deposit, Bulgaria: evidence from infrared fluid inclusion microthermometry of enargite and isotope systematics of barite. In D.G. Eliopoulos, (Editor), Mineral Exploration and Sustainable Development. Millpress, Rotterdam, pp. 1209–1212.
Movahed Aval, H. and Emami, M., 1978, Geology map of Mokhtaran, scale 1:100000. Geological survey of Iran.
Nadasan, L. and Nadasan, F., 2005. Gold mineralisation in hydrothermal-breccia from South Eastern part of Frasin deposit, Bucium district, Apuseni Mountains, Romania. Bulgaria Academic, Kiten, Bulgaria, Report of Project 486, 5 pp.
Naden, J., Killias, S.P.and Darbyshire, D.P.F., 2005. Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: the example of Milos Island, Greece. Geology, 33(7): 541–544.
Nadermezerji, S., Karimpour, M.H. and Malekzadeh Shafaroudi, A., 2017. Geology, Alteration, Mineralization, Geochemistry and petrology of intrusive units in the Shah Soltan Ali prospect area (Southwest of Birjand, South Khorasan province). Journal of Economic Geology, 9(1): 117–139. (in Persian with English abstract)
Ohmoto, H., 1972. Systematic of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551–581.
Ohmoto, H. and Rye, R.O., 1979. Isotopes of sulfur and carbon. In: H.L. Barnes (Editor), Geochemistry of Hydrothermal Ore Deposits. John Wiley & Sons, Newyork, pp. 509–567.
Omidvar, M.H., 2005. Lithogeochemical exploration reports of Khunik area (1:5000). 24th Iranian Conference, Geological Survey and Mineral Exploration of Iran, Tehran, Iran. (in Persian)
Prokofiev, V.Y., Garofalo, P.S., Bortnikov, N.S., Kovalenker, V.A., Zorina, L.D., Grichuk, D.V.and Selektor, S.L., 2010. Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia. Economic Geology, 105(2): 395–416.
Richards, J.P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Economic Geology, 107(2): 295–332.
Ross, P.S., Jebrak, M. and Walker, B.M., 2002. Discharge of hydrothermal fluids from a magma chamber and concomitant formation of a stratified breccia zone at the Questa porphyry molybdenum deposit, New Mexico. Economic Geology, 97(8): 1679–1699.
Rye, R.O., 2005. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology, 215(1–4): 5–36.
Samiee, S., 2016. Mineralization, petrology and geophysical studies in Khunik area, south of Birjand. Ph.D. thesis, Ferdowsi University of Mashhad, Mashhad, Iran, 299 pp.
Samiee, S., Karimpour, M.H., Ghaderi, M. and Haidarian Shahri, M.H., 2013. Geology, alteration, mineralization and geochemistry of Khunik area, south of Birjand. Iranian Journal of Crystallography and Mineralogy, 21(3): 487–498. (in Persian with English abstract)
Samiee, S., Karimpour, M.H., Ghaderi, M., Haidarian Shahri, M.R., Kloetzli, U. and Santos, J.F., 2016. Petrogenesis of subvolcanic rocks from the Khunik prospecting area, south of Birjand, Iran: Geochemical, Sr–Nd isotopic and U–Pb zircon constraints. Journal of Asian Earth Sciences, 115(1) 170–182.
Samiee, S., Karimpour, M.H., Ghaderi, M., Haidarian Shahri, M.R. and Santos, J.F., 2017. Dating and source determination of volcanic rocks from Khunik area (South of Birjand,
South Khorasan) using Rb-Sr and Sm-Nd isotopes. Petrology, 7(28): 145–160. (in Persian with English abstract)
Scott, A.M. and Watanabe, Y., 1998. Extreme boiling model for variable salinity of the Hokko low- sulfiation epithermal Au prospect, southwestern Hokkaido Japan. Mineralium Deposita, 33(6) 563–578.
Sheppherd, T.J., Rankin, A.H. and Alderton, D.H.M., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie and Son, Virginia, 239 pp.
Sillitoe, R.H., 1985. Ore-related breccias in volcanoplutonic arcs. Economic geology, 80(6): 1467–1514.
Sillitoe, R.H., 2005. Comments on the Chahshalghami, Hired, Maherabad, Khonik, Shurab gold prospects, Lut Block, eastern Iran. Geological Survey of Iran, Tehran, internal report, 11 pp.
Simmons, S.F. and Browne, P.R.I., 1997. Saline fluid inclusions in sphalerite from the Broadlands-Ohaaki geothermal system: A coincidental trapping of fluid boiled toward dryness. Economic Geology, 92(4): 485–489.
Thiersch, P.C., Williams-Jones, A.E. and Clark, J.R., 1997. Epithermal mineralization and ore controls of the Shasta Au–Ag deposit, Toodoggone District, British Columbia, Canada. Mineralium Deposita, 32(1) 44–57.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4): 229–272.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187.
Yilmaz, H., Oyman, T., Sonmez, F.N., Arehart, G.A. and Billor, Z., 2010. Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Sahinli/Tespih dere (Lapseki/western Turkey). Ore Geology Reviews, 37(3–4): 236–258.
CAPTCHA Image