زمین شناسی، کانی سازی، شیمی‌ کانی‌ ها، شیمی و منشأ محلول کانه دار در ناحیه معدنی سرب و روی ایرانکوه، جنوب اصفهان

نوع مقاله : علمی- پژوهشی

نویسندگان

1 فردوسی مشهد

2 کلرادو

چکیده

ناحیه معدنی ایرانکوه در جنوب اصفهان و در کمربند متالوژنی ملایر- اصفهان در زون سنندج- سیرجان واقع شده است. بر اساس شواهد زمین شناسی، آلتراسیون، شکل و بافت کانی سازی و مجموعه کانیایی، کانی سازی سرب و روی از نوع می سی سی پی است. زمین شناسی منطقه شامل سیلتستون و شیل ژوراسیک و انواع مختلف واحدهای کربناته کرتاسه است. کانی سازی کنترل ساختاری دارد و در سنگ میزبان کربناته (دولستون و سنگ آهک) و کمتر سنگ‌های آواری به شکل اپی ژنتیک تشکیل شده است. کانه‌زایی به شکل‌های برشی، رگه‌چه ای، پرکننده فضای خالی، لکه ای، پراکنده و جانشینی (در سنگ میزبان کربناته) دیده می شود. مجموعه کانیایی شامل اسفالریت غنی از آهن، گالن، کمی پیریت همراه با باطله‌های دولومیت غنی از آهن، آنکریت، بیتومن، کلسیت ± کوارتز ± باریت است. همبستگی مثبتی بین نقره و آنتیموان در گالن دیده می شود. نسبت Sb/Bi در کانی گالن بیش از 20 است که شاخصه کانسارهای دما پایین است. دمای تشکیل ایرانکوه (170 تا 260 درجه سانتی‌گراد) از کانسارهای تیپیک می سی سی پی امریکا (80 تا 120 درجه سانتی‌گراد) بالاتر است. بر اساس مقایسه ایرانکوه با ذخایر امریکا، دمای تشکیل کانسار رابطه مستقیم با مقدار آهن و رابطه ای معکوسی با مقدار کادمیوم اسفالریت دارد. مقدار آهن در اسفالریت های منطقه به بیش از 5 درصد رسیده و مقدار کادمیوم کمتر از 2000 گرم در تن است. همچنین دولومیت‌های هیدروترمالی در سنگ میزبان کربناته غنی از آهن هستند و در برخی نقاط آنکریت تشکیل شده است که نشان‌دهنده محلولی هیدروترمالی غنی از آهن است. در سنگ میزبان آواری، عمده آهن محلول کانه دار با گوگرد واکنش داده و پیریت را تشکیل داده است. در این قسمت‌ها دولومیت ها کم آهن هستند. شاخصه های کانی شناختی، دمایی و ماهیت غنی از آهن محلول کانه دار منطقه ایرانکوه می‌تواند به‌عنوان الگویی برای اکتشاف این نوع کانسارها در ایران و دنیا مدنظر قرار گیرد.

کلیدواژه‌ها


Ayati, F., Dehghani, H., Mokhtari, A.R. and Mojtahedzadeh, H., 2013. Geochemistry and mineralogy studies of Gushfil Pb-Zn deposit, Irankuh, Isfahan. Analytical and Numerical Methods in Mining Engineering, 6: 83-91 (in Persian).
Blackburn, W.H. and Schwendeman, J.F., 1977. Trace elements tu bstitutionn galena. The Canadian Mineralogist, 15: 365-373.
Boveiri Konari, M. and Rastad, E., 2016. Nature and origin of dolomitization associated with sulphide mineralization: new insights from the Tappehsorkh Zn-Pb (-Ag-Ba) deposit, Irankuh Mining District, Iran. Geological Journal, DOI: 10.1002/gj.2875
Boveiri Konari, M., Rastad, E., Mohajjel, M., Nakini, A. and Haghdoost, M., 2015. Structure and texture, mineralogy and formation of carbonate-clastic hosted Tapehsorkh Zn-Pb (Ag) deposit, south of Isfahan. Geosciences Quarterly, 25(97): 221-236. (in Persian with English abstract)
Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F., 2009. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73: 4761–4791.
Frenzel, M., Hirsch, T. and Gutzmer, J., 2016. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type –A meta-analysis. Ore Geology Reviews, 76: 52–78.
George, L., Cook, N.J. and Ciobanu, C.L., 2015. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. American Mineralogist, 100(2): 548-569.
Ghasemi, A., 1995. Facies analysis and geochemistry of Kolah-Darvazaeh, Goud-Zendan, and Khaneh-Gorgi Pb-Zn deposits from south of Irankuh. M.Sc. thesis, Tarbiat Modares University, Tehran, Iran, 158 pp. (in Persian)
Ghazban, F., McNutt, R.H. and Schwarcz, H. P., 1994. Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west-central Iran. Economic Geology, 89: 1262-1278.
Hosseini-Dinani, H. and Aftabi, A., 2016. Vertical lithogeochemical halos and zoning vectors at Goushfil Zn–Pb deposit, Irankuh district, southwestern Isfahan, Iran: Implications for concealed ore exploration and genetic models. Ore Geology Reviews, 72: 1004-1021.
Hosseini-Dinani, H., Aftabi, A., Esmaeili, A. and Rabbani, M., 2015. Composite soil-geochemical halos delineating carbonate-hosted zinc–lead–barium mineralization in the Irankuh district, Isfahan, west-central Iran. Journal of Geochemical Exploration, 156: 114-130.
Karimpour, M.H., Large, R.R., Razmara, M. and Pattrick, R.A.D., 2006. Bi- sulfosalt mineral series and their paragenetic associations in specularite-rich Cu-Ag-Au deposit, Qaleh-Zari mine, Iran. Iranina Journal of Crystallography and Mineralogy, 13(2): 417-432. (in Persian with English abstract)
Leach, D., Taylor, R.D., Fey, D.L., Diehl, S.F. and Saltus, R.W., 2010. A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores, Chapter A of Mineral Deposit Models for Resource Assessment. U.S. Geological Survey, Reston, Virginia, Scientific Investigations, Report 2010–5070–A, 64 pp.
Loftus-Hills, G. and Solomon, M., 1967. Cobalt, nickel and selenium in sulphides as indicators of genesis. Mineralium Deposita, 2: 228-242.
Luke, G., Nigel, J., Cook, C., Ciobanu, L. and Benjamin, P.W., 2015. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. American Mineralogist, 100: 548–569.
Malakhov, A.A., 1968. Bismuth and antimony in galena, indicators of conditions of ore deposition. Geokhimiya, 11: 1283-1296.
Marshal, R.R. and Joensuu, O., 1961. Crystal habit and trace element content of some galena. Economic Geology, 56: 758-771.
Nakini, A., Mohajjel, M., Rastad, A. and Bovieri Konari, M., 2015. Folding and faulting in Irankuh deposit, south of Isfahan. New Findings in Geology, 1(2): 235-254. (in Persian)
Newton, T., 2013. Geochemistry of the Timberville Zn-Pb District, Rockingham County, VA. Ph.D. thesis, University of Maryland, Maryland, USA, 137 pp.
Rajabi, A., Rastad, E. and Canet, C., 2012. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. International Geology Review, 54: 1649–1672.
Rastad, E., 1981. Geological, mineralogical and ore facies investigations on the Lower Cretaceous stratabound Zn – Pb – Ba – Cu deposits of the Irankuh mountain range, Isfahan, west central Iran. Ph.D. thesis, Heidelberg University, Heidelberg, Germany, 334 pp.
Reichert, J., 2007. A metallogenetic model for carbonate-hosted non-sulphide zinc deposits based on observations of Mehdi Abad and Irankuh, Central and Southwestern Iran. Ph.D. thesis, Martin Luther University Halle Wittenberg, Halle, Germany, 152 pp.
Searl, A., 1989. Saddle dolomite: a new of its nature and origin. Mineralogy Magazine, 53: 547–555.
Timoori-Asl, F., 2010. Sedimentology and petrology of Jurassic deposits and Basinal brines studies in formation of Irankuh deposit. M.Sc. thesis, Isfahan University, Isfahan, Iran, 120 pp. (in Persian)
Timoori-Asl, F., Pakzad, H.R. and Bagheri, H., 2011. Source of metals and ore-bearing fluids in Irankuh Pb-Zn deposit. Sedimentology and Stratigraphy Research, 27(44): 83-102. (in Persian)
Viets, J.G., Hopkins, R.T. and Miller, B.M., 1992. Variation in minor and trace metals in sphalerite from Mississippi Valley-type deposits of the Ozark Region: genetic implications. Economic Geology, 87:1897–1905.
Whitney. D.L. and Evans. B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185–187.
Ye, L., Cook, N.J., Liu, T., Ciobanu, C.L., Gao, W. and Yang, Y., 2012. The Niujiaotang Cd-rich zinc deposit, Duyun,Guizhou province, southwest China: ore genesis and mechanisms of cadmium concentration. Mineralum Deposita, 47:683–700.
Zahedi, M., 1976. Geological map of Esfahan, scale 1:250,000. Geological Survey of Iran.
Zhang, Q., 1987. Trace elements in galena and sphalerite and their geochemical significance in distinguishing in genetic types of Pb–Zn ore deposits. Chinese Journal of Geochemistry, 6(2):177–190.
CAPTCHA Image