بررسی محیط زمین‌ شناسی سیلیس‌ های منطقه دهنو- عبید (شمال شرقی عشق‌ آباد) با استفاده از مطالعات شاره‌ های درگیر

نوع مقاله : علمی- پژوهشی

نویسندگان

دامغان

چکیده

منطقه دهنو- عبید در فاصله 20 کیلومتری شمال شرق شهر عشق‌آباد در بلوک طبس و در قسمت شرقی زون ساختاری ایران مرکزی واقع شده است. لیتولوژی غالب در محدوده مورد بررسی شامل شیل‌های تیره رنگ و ماسه سنگهای ریزدانه‌ و درشت‌دانه‌ی آرکوزی و لیتیک آرکوز است که تا اندازه‌ای دگرگونی درجه پایین را نشان می‌دهند. در این منطقه، کانی‌سازی سیلیس به‌صورت رگه‌ای، رگه‌چه‌ای و در قسمتهایی به‌صورت عدسیهای بزرگ سیلیسی رخ داده است. بررسی ریز دماسنجی شاره‌های درگیر در کانی کوارتز نشان می‌دهد که دمای همگن‌شدگی بین 247 تا 336 درجه سانتی‌گراد و درجه شوری از 9/0 تا 8/15 درصد وزنی معادل نمک طعام و چگالی سیال کانی‌ساز بین 7/0 تا 9/0 گرم بر سانتی‌متر مکعب در تغییر است. با توجه به شواهد به‌دست آمده از بررسیهای صحرایی و آزمایشگاهی، از جمله بررسی ریز دماسنجی و همچنین حضور فاز کربنیک در شاره‌های درگیر، احتمالاً سیلیس‌های منطقه زیر شرایط دگرگونی تشکیل شده‌اند.

کلیدواژه‌ها


Aghanabati, A., 1994. Geological map of Eshghabad, scale 1:100000. Geological Survey of Iran.
Atkinson Jr, A.B., 2002. A Model for the PTX Properties of H2O-NaCl. M.Sc. Thesis, Virginia Tech University, U.S.A, 126 pp.
Bodnar, R.J., 1993. Revised equatin and table for determining the freezing point depression of H2O-NaCl solutions. Geochimical et cosmochemica acta, 57(3): 683-684.
Bodnar, R.J., 2003a. Introduction to fluid inclusions. In: I. Samson, A. Anderson and D. Marshall (Editors), Fluid Inclusions: Analysis and Interpretation. Mineral Assoc Canada, pp. 1-8.
Bodnar, R.J., 2003b. Introduction to aqueous fluid systems. In: I. Samson, A. Anderson and D. Marshall (Editors), Fluid Inclusions: Analysis and Interpretation. Mineral Assoc, Canada, pp. 81-99.
Bodnar, R.J., 2003c. Reequilibration of fluid inclusions. In: I. Samson, A. Anderson and D. Marshall (Editors), Fluid Inclusions: Analysis and Interpretation. Mineral ASSOC, Canada, pp. 213-230.
Bodnar, R.J., Reynolds, T.J. and Kuehn, C.A., 1985. Fluid inclusion systematics in epithermal systems. In: B.R. Berger and P.M. Bethke (Editors), Geology and geochemistry of epithermal systems.Society of Economic Geology, America, pp. 73-98.
Brown, P.E., 1985. Au-only and Au-Ag-base metal ores of the Sioux Lookout-Sturgeon Lake area. NW Ontario-A comparison. Geological Society of America abstract program,17: 533
Brown, P.E. and Lamb, W.M., 1986. Mixing of H20-CO2 in fluid inclusions; Geobarometry and Archean gold deposits. Geochimica et Cosmochimica Acta, 50(5): 847-852.
Chi, G. and Xue, Ch., 2011. Abundance of CO2-rich fluid inclusions in a sedimentary basin-hosted Cu deposit at Jinman, Yunnan, China: implications for mineralization environment and classification of the deposit. Mineralium Deposita, 46(4): 365–380.
Crawford, M.L., Kraus, D.W. and Hollister, L.S. 1979. Petrologic and fluid inclusion study of calc-silicate rocks,Prince Rupert, British Columbia. American Journal of Sciences, 279 (10) 1135-1159.
Davoudzadeh, M. and Schmidt, K., 1982. ZurTrias des Iran.GeologischeRundschau, 71(3): 1021-1039.
Hajalilou, B., 2008. Geothermometry of Fluid Inclusions. Payame Noor University Press, Tehran, 305 pp (in Persian).
Hall, D.L., Sterner, S.M. and Bodnar, R.J. 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology, 83(1): 197-202.
Hendel, E.M., Hollister, L.S., 1981. An empirical solvus for - Co2 - H2O -2.6 weight % salt. Geochimica et Cosmochimica Acta, 45(2): 225-228.
Huizenga, J.M., Gutzmer, J., Banks, D. and Greyling, L., 2006. The Paleoproterozoic carbonate-hosted Pering Zn–Pb deposit, South Africa. II: fluid inclusion, fluid chemistry and stable isotope constraints. Journal of African Earth Sciences, 29(2): 311-324.
Kesler, S.E., 2005. Ore Forming Fluid. Element, 1(1): 13-18.
Klein, E.L. and Fuzikawa, K., 2010. Origin of the CO2-only fluid inclusions in the PalaeoproterozoicCarara vein-quartz gold deposit, Ipitinga Auriferous District, SE-Guiana Shield, Brazil: Implications for orogenic gold mineralization. Ore Geology Reviews, 37(1): 31–40.
Kosari, S., 2004. Systematic geochemical exploration in sheet 1: 100000 Eshghabad. Geological Survey of Iran, Tehran, 135 pp (in Persian).
Lan, T.G., Fan, H.R., Hu, F.F., Yang, K.F., Liu, X., Liu, Z.H., Song, Y.B. and Yu, H.,. 2010. Characteristics of ore-forming fluids and ore genesis in the Shicheng gold deposit, Jiaodong Peninsula of eastern China. Acta Petrology Sinica, 26(5): 1512–1522.
Lynch, J.V.G., Longstaffe, F.J. and Nesbitt, B.E., 1990.Stable isotopic and fluid inclusion indications of large-scale hydrothermal paleoflow, boiling, and fluid mixing in the Keno Hill Ag-Pb-Zn district, Yukon Territory, Canada.Geochimica Cosmochimica Acta, 54(4): 1045–1059.
Pirajno, F., 2009.Hydrothermal Processes and Mineral Systems. Springer Science, Australia, 1250 pp.
Rodder, E., 1979. Fluid inclusions as samples of ore fluids. In: H.L. Barnes (Editors), Geochemistry of Hydrothermal Ore Deposite. John Wiley and Sons Interscience, New York, pp.684-737.
Rodder, E., 1984. Fluid inclusion. Mineralogical Society of America, V.12, 644 pp.
Shepherd, T., Rankin, A.H. and Allderton, D.H.M., 1985. A Practical Guide to Fluid Inclusion Studies Blackie. USA Chapman and Hall, New York, 239 pp.
Sisson, V.B., Cravford, M.L. and Thompson, P.H., 1981. CO2-Brine immiscibility at high temperatures, evidence from calcareous metasedimentary rocks. Contributions to Mineralogy and Petrology, 78 (4) 371-378.
Smith, T.J., Cloke, P.L. and Kesler, S.E., 1984, Geochemistry of fluid inclusions from the McIntyre-Hollinger gold deposit, Timmins, Ontario Canada. Economic Geology, 79(6): 1265-1285.
Takin, M., 1972. Iranian Geology and Continental Drift in the Middle East. Nature Cell Biology, 235 (5334): 147-150.
Tucker, M.E., (translated by Harami, R.M. and Mahboobi, A.), 1994. Sedimentary Petrology (an introduction to the origion of sedimentary rocks), Jahad Daneshgahi Press, Mashhad, 493 pp (in Persian).
Tuttle, O.F., 1949. Structural petrology of planes of liquid inclusions. Journal of Geology, 57(4): 331-356.
Van den Kerkhof, A. and Hein, U.F., 2001. Fluid inclusion petrography. Lithos, 55(1-4): 27–47.
Van den Kerkhof, A., Kronz, A. and Simon, K., 2014. Deciphering fluid inclusions in high-grade rocks. Geoscience Frontiers, 5(5): 683-695.
Van den Kerkhof, A. and Thiery, R., 2001. Carbonic inclusions. Lithos, 55(1): 49–68.
Wang, Z.L., Yang, L.Q., Guo, L.N., Marsh, E., Wang, J.P., Liu, L., Zhang, C., Li, R.H., Zhang, L., Zheng, X.L. and Zhao, R.X., 2015. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: A fluid inclusion study. Ore Geology Reviews, 65(3) 701–717.
Wilkinson, J.J., 2001. fluid inclusion in hydrothermal ore deposits. Lithos, 55(1-4): 229-272.
Wilmsen, M., Fursich F.T., Seyed Emami K. and Majidifard M.R.,2009. An overview of the stratigraphy and facies development of the Jurassic System on the Tabas Block, east-central Iran. In: M.F. Brunet, M. Wilmsen and J.W. Granath, (Editors), South Caspian to Central Iran basins. Geological Society, London, pp. 323-344.
Wilmsen, M., Fürsich, F.T., Seyed-Emami, K.M., Majidifard, R. and Zamani-Pedram, M., 2010. Facies analysis of a large-scale Jurassic shelf-lagoon: the Kamar-e-Mehdi Formation of east-central Iran. Facies, 56(1): 59–87.
Yardley, B.W.D. and Bodnar, R.J., 2014. Fluids in the Continental Crust. Geochemical Perspectives, 3(1): 1-127.
Zand Moghadam, H., Moussavi Harami, R. andMahboubi,A.,2014. Sequence stratigraphy of the Early–Middle Devonian succession (PadehaFormation) in Tabas Block, East-Central Iran: Implication for mixed tidalflat deposits. Palaeoworld, 23(1):31-49.
CAPTCHA Image