پترولوژی و ژئوشیمی سنگهای مافیک و گرانیت‌ های A2 میشو در جنوب‌ شرقی مرند، شمال‌ غرب ایران

نوع مقاله : علمی- پژوهشی

نویسندگان

1 پیام نور مرکز شهرکرد

2 تبریز

چکیده

توده‌های نفوذی میشو در دامنه جنوبی گسل شمالی تبریز و در منتهاالیه شرقی ارتفاعات میشو، در شمال‌غرب تبریز برونزد دارند. با بررسیهای صحرائی، سنگ‌شناسی و ژئوشیمیائی در منطقه، دو تیپ سنگی مافیک و اسیدی تفکیک شده‌اند. سنگهای مافیک شامل گابروهایی هستند که از نظر کانی‌شناسی حاوی پلاژیوکلاز، کلینوپیروکسن، اولیوین همراه با اوپاک فراوان می‌باشند و توده اسیدی شامل گرانیت‌های آلکالن با ترکیب کانی‌شناسی فلدسپات پتاسیک، کوارتز، پلاژیوکلاز به‌همراه مقادیر کمی بیوتیت و آمفیبول می‌شوند. سنگهای مافیک دارای غنی‌شدگی LREEs نسبت به HREEs و همچنین غنی‌شدگی نسبی از LILEs و تهی‌شدگی از عناصر HFSEs می‌باشند. علایم ژئوشیمیایی گابروها دلالت بر تشکیل این سنگها در نتیجه تأثیر متقابل منبع گوشته تهی‌شده با یک پلوم گوشته‌ای بالاآمده می‌کند. این در حالی است که سنگهای گرانیتی دارای ماهیت آلکالن، متاآلومینوس تا پرآلومینوس هستند که به‌طور نسبی غنی‌شدگی از LILEs به‌ویژه Rb و Th و فقیرشدگی از عناصر Nb، Sr، Eu، Ba و Ti نشان می‌دهند. علایم ژئوشیمیایی گرانیت‌ها به گرانیت‌های تیپ A و زیرگروه A2 تعلق دارد که در طی فعالیتهای تکتونیکی کششی پس از برخورد در حاشیه قاره‌ای فعال از ذوب‌ پوسته‌ای تحتانی تشکیل شده‌اند.

کلیدواژه‌ها


[1] نبوی م. ح.، "دیباچه ای بر زمین‌شناسی ایران"، انتشارات سازمان زمین‌شناسی کشور، (1355) 109 ص.
[2] افتخارنژاد ج.،"تفکیک بخشهای مختلف ایران از نظر وضع ساختمانی در ارتباط با حوضه رسوبی"، (1359).
[3] Stocklin J., “Structural history and tectonics of Iran”; a review. American Association of Petroleum Geologists Bulletin 52 (1968) 1229–1258.
[4] افتخارنژاد ج.، قرشی م.، مهرپرتو م.، "نقشه زمین‌شناسی چهارگوش تبریز - پلدشت با مقیاس 250000/1"، سازمان زمین‌شناسی و اکتشاف معدنی کشور، (1991).
[5] اسدیان ع.، راستگار م.، محجل م.، حاج علیلو ب.، "نقشه زمین‌شناسی 100000/1 مرند"، سازمان زمین‌شناسی و اکتشاف معدنی کشور، (1373).
[6] پیرمحمدی علیشاه ف.،"تحقیق و بررسی پترولوژی و پتروگرافی توده آذرین شمال روستای هریس واقع در کو‌ههای میشو"، پایان‌نامه کارشناسی ارشد. دانشگاه تبریز، دانشکده علوم،طبیعی، گروه زمین‌شناسی، (۱۳۸۴).
[7] مؤید م.، حسین‌زاده ق.، "سنگ‌نگاری و سنگ‌شناسی گرانیتوئیدهایA-type شرق کوههای میشو با نگرشی بر اهمیت ژئودینامیکی آنها"، مجله بلورشناسی و کانی‌شناسی، شماره 3 (1390) ص 529-544.
[8] Streckeisen A., “To each plutonic rock its proper name”, Earth Science Reviews 12 (1976) 1–33.
[9] Cox K. G., Bell J. D., Pankhurst R. J.,” The Interpretation of Igneous Rocks”, George Allen and Unwin, London (1979) 450.
[10] Wilson M.,” Igneous Petrogenesis: A Global Tectonic Approach”, Chapman & Hall, London (1989) 446.
[11] Irvin T. N., Baragar W. R. A. “Aguide to the chemical classification of the common volcanic rocks”, Canadian Journal Earth Science 8 (1971) 523-528.
[12] Peccerillo A., Taylor S. R., "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey", Ibid 58 (1976) 63-81.
[13] Maniar P. D., Piccolli P. M., “Tectonic discrimination of granitoids”, Geological Society of America Bulletin 101 (1989) 635–643.
[14] Harker A., “The natural history of igneous rocks”, Macmillan, New York (1909) 384.
[15] Sun S. S., McDonough W. F., “Chemical and isotopic systematic of ocean basalts: Implication for mantle composition and processes”, In: Saunders, A.D., Norry, M.J., (Eds.), Magmatism in Ocean Basins. Geological Society of London, Special publication 42 (1989) 313-345.
[16] Temizel I., Arslan M., “Mineral chemistry and petrochemistry of post-collisional Tertiary mafic to felsic cogenetic volcanics in the Ulubey (Ordu) area, Eastern Pontides, NE Turkey”, Turkish Journal of Earth Sciences 18 (2009) 29–53.
[17] Thirlwall M. F., Smith T. E., Graham A. M., Theodorou N., Hollings P., Davidson J. P., Arculus R. J., “High field strength element anomalies in arc lavas; source or process?”, Journal of Petrology 35 (1994) 819–838.
[18] Thompson R. N., Morrison M. A., Hendry G. L., Parry S. J., “An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach”, Philosophical Transactions of the Royal Society, London A 310 (1984) 549–590.
[19] Harris C., “The petrology of lavas and associated plutonic inclusions of Ascension Island”, Journal of Petrology 24 (1983) 424-470.
[20] Zhao X. F., Zhou M. F., Li J. W., Wu F.Y., “Association of Neoproterozoic A- and I-type granites in South China: implications for generation of A-type granites in a subduction-related environment”, Chemical Geology 257 (2008) 1–15.
[21] Jørgenson C. K., “Theoretical chemistry of rare earths”, Handbook on the Physics and Chemistry of Rare Earths 3 (1979) 111–169.
[22] Nugent L. J., “Theory of the tetrad effect in the lanthanide (III) and actinide (III) series”, Journal. Inorganic Chemistry 32 (1970) 3485–3491.
[23] Pearce J. A., Cann J. R., “Tectonic setting of basic volcanic rocks determined using trace element analysis”, Earth Planetary Sciences Letters 19 (1973) 290-300.
[24] Pearce J. A., Norry M. J., “Petrogenetic implications of Ti, Zr, Y, and Nb variations in rocks”, Contribution Mineralogy Petrology 69 (1979) 33-47.
[25] Meschede M., “A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram”, Chemical Geology 56 (1986) 207–218.
[26] Tatsumi Y., Kogiso T., “The subduction factory: its role in the evolution of the Earth’s
crust and mantle. In: Larter, R.D., Leat, E.T. (Eds.), Intra-oceanic Subduction Systems: Tectonic and Magmatic Processes”, Geological Society London, Special Publication 219 (2003): 55–80.
[27] Rollinson H., “Using geochemical data: evolution, presentation, interpretation”, Longman Scientific & Technical, UK (1993) 344.
[28] Woodhead J. D., Eggins S., Gamble J., “High field strength and transition element systematic in island arc and back-arc basin basalts: evidence for a multiphase melts extraction and a depleted mantle wedge”, Earth and Planetary Science Letters 114 (1993) 491–504.
[29] Condie K. C., “Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the south-western United States”, The Journal of Geology 94 (1986) 845–864.
[30] Hanan B.B., Blichert-Toft J., Kingsley R., Schilling J.-G., "Depleted Iceland mantle plume geochemical signature: Artifact of multicomponent mixing?” Geochemistry Geophysics Geosystems doi:10.1029/1999GC000009 (2000)
[31] Chappell B. W. White A. J. R.,”I- and S- type granites in the Lachlan Fold Belt”, Transactions of the Royal Society of Edinburgh, Earth Sciences 83 (1992) 1–26.
[32] Collins W. J., Beams S. D., White A. J., Chappell B. W. “Nature and origin of A-type granites with particular reference to Southeastern Australia”, Contributions to Mineralogy and Petrology 80 (1982) 189–200.
[33] Whalen J. B., Currie K. L., Chappell B. W. “A-type granites: geochemical characteristics discrimination and petrogenesis”, Contributions to Mineralogy and Petrology 95 (1987) 407–419.
[34] Eby E. N., “Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications”, Geology 20 (1992) 641–644.
[35] Pitcher W. S., “The Nature and Origin of Granite”, 2nd ed. Chapman & Hall, London (1997) 386.
[36] Abdel Rahman A M., “Petrogenesis of anorogenic peralkaline granitic complexes from eastern Egypt”, ineralogical Magazine 70 (2006) 27–50
[37] Konopelko D., Biske G., Seltmann R., Eklund O., Belyatsky B., “Hercynian postcollisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan”, Lithos 97 (2007) 140–160.
[38] Pearce J. A., “Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) andesites: orogenic andesites and related rockes”, Wiley, New York (1982) 525-548.
[39] Shandl E. S., Gorton M. P., “application of high field strength elements to discriminate tectonic setting in VMS environments”. Economic geology 97 (2002) 629-642.
[40] Petro W. L., Vogel T. A., Willboard j. T., “Major elements chemistry of plutonic rock suites from compressional and extensional plate boundaries”, Chemistry Geology 26 (1979) 217-235.
[41] Mufti M. R. H., “Age geochemistry and origin of peraluminous A-type granitoids of the Ablah-Shuwas pluton, Ablah graben. Arabian Shield”, Acta Mineralogy Petrographica, Szeged 42 (2001) 5-20.
[42] Black R., Liegeois J. P., “Cratons, Mobile belts, Alkaline rocks sand continental lithospheric mantle”, epanafrin,testimony. Journal of Geological Society, Londen 150 (1993) 89-98.
[43] Housmann G. A., McKenzie D. P., Molnar P.J., “Convective instability of a thickend boundry layer and its relevance for the thermal evolution of continental convergent belts”, Journal of geophysical research 86 (1981) 6115-6132.
[44] Davies H. J., Von Blank enburg F., “Slab break off: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogenes”, Earth and planetary science letters 129 (1995) 85-102.
[45] آهنکوب م.،" پتروژنز و ژئوشیمی گرانیتوئیدهای شرق کوههای میشو، شمال غرب ایران"، پایان‌نامه دکتری، دانشگاه تبریز، دانشکده علوم طبیعی، گروه زمین‌شناسی، (1391).
[46] Saccani E., Azimzadeh Z., Dilek Y and Jahangiri J., “Geochronology and Petrology of the Early Carboniferous Misho Mafic Complex (NW Iran), and Implications for the Melt Evolution of Paleo-Tethyan Rifting in Western Cimmeria”, Lithos 162 (2013) 264–278.
[47] Guo F., Fan W.M., Wang Y.J., Li C.W., “Upper Paleozoic basalts in the southern Yangtze block: Geochemical and Sr-Nd isotopic evidence for asthenosphere-lithosphere interaction and opening of the Paleo-Tethyan Ocean”, International Geology Review 46 (2004) 332–346.
[48] Xiao L., He Q., Pirajno F., Ni P., Du J., Wei Q.,” Possible correlation between a mantle plume
and the evolution of Paleo-Tethys Jinshajiang Ocean: Evidence from a volcanic rifted margin in the Xiaru-Tuoding area, Yunnan, SW China”, Lithos 100 (2008) 112–126.
[49] Kretz R., “Symbols for rock-forming minerals”, American Mineralogist 68 (1983) 277-279.
CAPTCHA Image