تحولات زمین‌ شناسی الیگوسن زیرین منطقه چاه علی خان(شمال‌ شرق استان اصفهان)؛ بر پایه بررسی دایک‌ های آلکالی بازالت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه زمین‌ شناسی، دانشگاه اصفهان، اصفهان، ایران

2 دکتری، گروه زمین‌ شناسی، دانشگاه اصفهان، اصفهان، ایران

3 استاد، گروه زمین‌شناسی، دانشگاه اصفهان، اصفهان، ایران

4 استادیار، گروه زمین‌ شناسی، دانشکده علوم پایه، دانشگاه تربیت مدرس، 175- 14115، تهران، ایران

10.22067/econg.2023.84766.1090

چکیده

در منطقه چاه ­علی‌ خان (شمال‌شرق استان اصفهان، شمال کویر دق سرخ)، دایک‌های بازیک به سن الیگوسن زیرین رخنمون دارند. این دایک­ها با دو روند عمومی NW-SE و NE-SW به درون واحد‌های آتشفشانی و فلیش‌های ائوسن نفوذ کرده‌­اند. دایک‌های با امتداد شمال‌غرب‌- جنوب‌شرق جوان‌تر بوده و دایک‌های شمال‌شرق‌- جنوب‌غرب را قطع کرده­‌اند. هر دو سری دایک از نظر سنگ‌نگاری مشابه بوده و از کانی‌های پلاژیوکلاز، کلینوپیروکسن، الیوین، سانیدین، اسپینل کروم‌دار و ایلمنیت تشکیل شده ­اند. زئولیت، کلریت، سرپانتین، کلسیت و مگنتیت کانی ­های ثانویه هستند. این دایک‌ها دارای بافت‌های پورفیری، گلومروپورفیری، پوئی‌کیلیتیک، میکرولیتی پورفیری، تراکیتی (جریانی) و در بخش‌های داخلی دایک‌ها اینترگرانولار و گرانولار هستند. این بازالت‌ها از عناصر آلکالی، LREE وLILE غنی بوده و دارای نسبت بالای LREE/HREE (0/10-8/9La/Yb=) هستند و در نمودار­های طبقه ­بندی که بر اساس عناصر کم تحرک و HFSEs ترسیم شده­اند، آلکالی بازالت نامیده میشوند. ماگمای سازنده این دایک‌های بازالتی در اثر ذوب‌بخشی یک گوشته لرزولیتی اسپینل و گارنت­دار که از قبل متاسوماتیسم کربناته شده، داشته است، ایجاد شده است. تشکیل دایک های آلکالی بازالتی چاه ­علی ­خان را می ­توان به فرورانش پوسته اقیانوسی اطراف خرد قاره شرق ایران مرکزی و ذوب ناشی از کاهش فشار در یک سامانه کششی پس از برخورد در منطقه انارک- جندق نسبت‌داد. این مذاب بازالتی حاصل درجه‌های پایین ذوب‌بخشی یک گوشته لرزولیتی متاسوماتیسم ­شده ­است که در شرایطی که پوسته قاره‌ای در الیگوسن زیرین دچار کشش شده، تولیدشده و از طریق گسل­ های منطقه صعود‌ کرده است.

کلیدواژه‌ها


Abdel-Fattah, M., Abdel-Rahman, A.M. and Nassar, P.E., 2004. Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from Northern Lebanon. Geological Magazine, 141(5): 545–63. https://doi.org/10.1017/S0016756804009604
Aistov, L., Melnikov, B., Krivyakin, B., Morozov, L., Kiristaev, V. and Romanko, E., 1984. Geology of the Khur Area (Central Iran). Geological Survey of Iran, Tehran, Report 20, 132 pp.
Bayat, F. and Torabi, G., 2011. Alkaline lamprophyric province of Central Iran. Island Arc, 20(3): 386–400. https://doi.org/10.1111/j.1440-1738.2011.00776.x
Bogaard, P.J.F. and Worner, G., 2003. Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. Journal of Petrology, 44(3): 569–602. https://doi.org/10.1093/petrology/44.3.569
Cox, K.G., Bell, J.D. and Pankhurts, R.J., 1979. The interpretation of Igneous rocks, Allen and Unwin, London, 450 pp. https://doi.org/10.1007/978-94-017-3373-1
Dostal, J. 2017. Rare earth element deposits of alkaline igneous rocks. Resources 6(3): 34. https://doi.org/10.3390/resources6030034
Ellam, R., 1992. Lithospheric thickness as a control on basalt geochemistry. Geology, 20(2): 153–156. https://doi.org/10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2
Fitton, J.G. and Upton, B.G.J., 1987. Alkaline Igneous Rocks, Blackwell, London, 576 pp.
Ghasemi, H., Barahmand, M. and Sadeghian, M., 2011. The Oligocene basaltic lavas of east and southeast of Shahroud: Implication for back-arc basin setting of Central Iran Oligo-Miocene basin. Petrological Journal, 2(7): 77-94. (in Persian with English abstract) Retrieved November 1 2023 from https://ijp.ui.ac.ir/article_16081.html?lang=en
Ghasemi, H., Rostami Hossuri, M., Sadeghian, M. and Kadkhodaye Arab, F., 2016. Back-arc extensional magmatism in the Oligo-Miocene basin of the Northern edge of Central Iran. Scientific Quarterly Journal of Geosciences, 25(99): 239–252. (in Persian with English abstract) https://doi.org/10.22071/gsj.2016.40915
Goli, Z., Torabi, G. and Arai, S., 2021. High-K calc-alkaline Eocene volcanic rocks from the Anarak area (Central Iran): A key structure for the early stages of oceanic basin closure and the beginning of collision. Geotectonics, 55(4): 600–617. https://doi.org/10.1134/S0016852121040075
Gorton, M.P. and Schandl, E.S., 2000. From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist, 38(5): 1065–1073. https://doi.org/10.2113/GSCANMIN.38.5.1065
Hollocher, K., Robinson, P., Walsh, E. and Roberts, D., 2012. Geochemistry of amphibolite-facies volcanics and gabbros of the Storen Nappe in extensions west and southwest of Trondheim, western Gneiss region, Norway: A key to correlations and paleotectonic settings. American Journal of Science, 312(4): 357–416. https://doi.org/10.2475/04.2012.01
Hughes, C.J., 1973. Spilites, keratophyres, and the igneous spectrum. Geological Magazine, 109(6): 513–527. https://doi.org/10.1017/S0016756800042795
Jamshidzaei, A., Torabi, G., Morishita, G. and Tamura, A., 2021. Eocene dike swarm and felsic stock in Central Iran: Roles of metasomatized mantle wedge and Neo-Tethyan slab. Journal of Geodynamics, 145 (1): 101844. https://doi.org/:10.1016/j.jog.2021.101844
Jaques, A.L., Creaser, R.A., Ferguson, J. and Smith, C.B., 1985. A review of the alkaline rocks of Australia. Geological Society of South Africa, 88: 34‌–311. Retrieved October 14, 2023 from https://pubs.geoscienceworld.org/gssa/sajg/article/88/2/311/122026/A-review-of-the-alkaline-rocks-of-Australia
Kiseeva, E.S., Kamenetsky, V.S., Yaxley, G.M. and Shee, S.R., 2017. Mantle melting versus mantle metasomatism–“The chicken or the egg” dilemma. Chemical Geology, 455(20): 120–130. https://doi.org/10.1016/j.chemgeo.2016.10.026
Le Maitre, R.‌W., 1976. The chemical variability of some common igneous rocks. Journal of Petrology 17(4): 589–637. https://doi.org/10.1093/petrology/17.4.589
Le Maitre, R.W., 2002. Igneous Rocks: A classification and glossary of terms, 2nd edn. Cambridge University Press, New York, 236 pp. https://doi.org/10.1017/CBO9780511535581
McDonough, W.F. and Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120(3–4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
McKenzie, D.P. and Bickle, M.J. 1988. Volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3): 625–679. https://doi.org/10.1093/petrology/29.3.625
Mohammadi, N., Sodoudi, F., Mohammadi, E. and Sadidkhouy, A., 2013. New constraints on lithospheric thickness of the Iranian plateau using converted waves. Journal of Seismology, 17(3): 883–895. https://doi.org/10.1007/s10950-013-9359-2
Moradi, S., Khaksar, T., Nazarinia, A. and Hussain, A., 2022. Petrology and geochemistry of Plio-Quaternary high-Nb basalts from Shahr-e-Babak area: Insights into post-collision magmatic processes in the Kerman Cenozoic Magmatic Arc. Geologica Acta, 20(8): 1–19. https://doi.org/10.1344/GeologicaActa2022.20.8
Rajabi, S. and Torabi, G., 2012. Petrology of mantle peridotites and volcanic rocks of the narrowest Mesozoic ophiolitic zone from central Iran (Yazd province). Neues Jahrbuch fur Geologie und Palaeontologie - Abhandlungen, 265(1): 49–78. https://doi.org/10.1127/0077-7749/2012/0245
Rajabi, S., Torabi, G. and Arai, S., 2014. Oligocene crustal xenolith-bearing alkaline basalt from Jandaq area (Central Iran): implications for magma genesis and crustal nature. Island Arc, 23(2): 125–141. https://doi.org/10.1111/iar.12063
Ramezani, J. and Tucker, R. D., 2003. The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(7): 65–622. http://dx.doi.org/10.2475/ajs.303.7.622
Rostami-Hossouri, M., Ghasemi, H., Pang, K.N., Shellnutt, J.G., Rezaei-Kahkhaei, M., Miao, L., Mobasheri, M., Iizuka, Y., Lee, H-Y. and Lin, T-H., 2020. Geochemistry of continental alkali basalts in the Sabzevar region, northern Iran: implications for the role of pyroxenite in magma genesis. Contributions to Mineralogy and Petrology, 175(5): 1–22. https://doi.org/:10.1007/s00410-020-01687-z
Rudnick, R.L., McDonough, W.F. and Chappell, B.W., 1993. Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth and Planetary Science Letters, 114(4): 463–475. https://doi.org/10.1016/0012-821X(93)90076-L
Salim, H., Torabi, G., Shirdashtzadeh, N., Sahlabadi, M. and Morishita, T., 2022. Early Oligocene continental alkalibasalts of the Central Toveireh area (Southwest of Jandaq, Isfahan Province, Iran). Geotectonics, 56(2): 241–256. https://doi.org/10.1134/s001685212202011x
Shakerardakani, F., Neubauer, F., Bernroider, M., Von Quadt, A., Peytcheva, I., Liu, X., Genser, J., Monfaredi, B. and Masoudi, F., 2017. Geochemical and isotopic evidence for Carboniferous rifting: mafic dikes in the central Sanandaj-Sirjan zone (Dorud-Azna, West Iran). Geologica Carpathica, 68(3): 229–247. https://doi.org/10.1515/geoca-2017-0017
Sharkovski, M., Susov, M., Krivyakin, B., Morozov, L., Kiristaev, V. and Romanko, E., 1984. Geology of the Anarak Area (Central Iran), Geological Survey of Iran, Technoexport, Report 19: 143 pp.
Shaw, A.M., Hilton, D.R., Fischer, T.P., Walker, J.A. and Alvarado, G.E., 2003. Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth and Planetary Science Letters, 214(3–4): 499–513. https://doi.org/10.1016/S0012-821X(03)00401-1
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry, (Editors) Magmatism in ocean basins. Geological Society London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Torabi, G., 2010. Early Oligocene alkaline lamprophyric dikes from the Jandaq area (Isfahan Province, Central Iran): Evidence of Central-East Iranian microcontinent confining oceanic crust subduction. Island Arc, 19(2): 277–291. https://doi.org/10.1111/j.1440-1738.2009.00705.x
Torabi, G., 2011. Middle Eocene volcanic shoshonites from western margin of Central-East Iranian Microcontinent (CEIM), a mark of previously subducted CEIM-confining oceanic crust. Petrology, 19(7): 675–689. https://doi.org/10.1134/S0869591111030039
Torabi, G. and Hemmati, O., 2011. Alkaline basalt from the Central Iran, a mark of previously subducted Paleo-Tethys oceanic crust. Petrology, 19(7): 690–704. https://doi.org/10.1134/S0869591111070034
Turner, S., Sandiford, M. and Foden, J., 1992. Some geodynamicand compositional constraints on post orogenic magmatism. Journal of Economic Geology, 20(10): 931–934. https://doi.org/10.1130/0091-7613(1992)020<0931:SGACCO>2.3.CO;2
Verma, S.P. and Agrawual, S., 2011. New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Revista Mexicana de Ciencias Geológicas, 28(1): 24–44. Retrieved October 14, 2023 from https://www.redalyc.org/articulo.oa?id=57220090003
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. http://dx.doi.org/10.2138/am.2010.3371
Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 249–284. https://doi.org/10.1016/0009-2541(77)90057-2
Zeng, G., Chen, L.H., Xu, X.S., Jiang, S.Y. and Hofmann, A.W., 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chemical Geology, 273(1–2): 35–45. https://doi.org/10.1016/j.chemgeo.2010.02.009
Zhang, G., Peng, R., Qiu, H., Wen, H., Feng, Y., Chen, B., Zhang, L., Liu, S. and Liu, T., 2020. Origin of Northeast Fujian basalts and limitations on the heterogeneity of mantle sources for Cenozoic alkaline magmatism across SE China: Evidence from zircon U–Pb dating petrological, whole-rock geochemical, and isotopic studies. Minerals 10(9): 1–18. https://doi.org/:10.3390/min10090770
     
CAPTCHA Image