ژئوشیمی و جایگاه زمین ساختی سنگ های آتشفشانی جنوب شرق میمه، شمال غرب اصفهان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین شناسی دانشگاه پیام نور، تهران، ایران

چکیده

برون‌زدهای آتشفشانی جنوب‌شرق میمه، در لبه غربی کمان ماگمایی ارومیه دختر و 80 کیلومتری شمال‌غرب اصفهان قرار گرفته ­اند.  این سنگ‌ها با طیف ترکیبی بازیک تا حدواسط دارای درشت­ بلورهای پلاژیوکلاز، پیروکسن، الیوین، آمفیبول و بیوتیت و بافت­ های میکرولیتی پورفیری و حفره ­ای هستند. غنی­ شدگی عناصر LIL در مقایسه با HFSEs به ­ویژه Nb و  Tiهمراه با روند کاهشی شیب تغییرات عناصر کمیاب این سنگ ­ها، از ویژگی­ های شاخص ماگماتیسم مناطق فرورانشی است. بر اساس نمودارهای محیط زمین ­ساختی، نمونه ­ها در گستره حاشیه قاره پهنه ­های فرورانشی جای گرفته­ اند. داده­ های ژئوشیمیایی نشان می­ دهند که ماگمای اولیه از یک خاستگاه گوشته ­ا­ی با ماهیت گارنت ­لرزولیتی که قبلا ًتوسط سیالات ناشی از ورقه فرورو غنی‌شده، پدید آمده است. به نظر می‌رسد فرورانش مداوم حجم بالای پوسته سرد اقیانوسی به داخل گوشته حین هم‌گرایی‌ ورقه­ های ایران- عربستان، باعث برهم زدن ترازهای حرارتی گوشته‌شده و در نتیجه این آشفتگی، گوشته با فاز باقی‌مانده گارنت و نرخ ذوب‌بخشی پایین، ذوب‌شده و ماگمای آلکالن را به وجود آورده است. تفریق و آلایش پوسته­ ای ماگمای داغ بازیک حین صعود و جای‌گیری آن در پوسته، سنگ­ های حدواسط با ماهیت کالک‌آلکالن را پدید آورده است.

کلیدواژه‌ها


Abu-Hamatteh, Z.S.H., 2005. Geochemistry and petrogenesis of mafic magmatic rocks of the Jharol Belt, India: Geodynamic implication. Journal of Asian Earth Sciences, 25(4): 557–581. https://doi.org/10.1016/j.jseaes.2004.05.006
Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005. Convergence history across Zagros (Iran): Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(3): 401–419. http://doi.org/10.1007/s00531-005-0481-4
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304(1): 1–20. http://doi.org/10.2475/ajs.304.1.1
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2000. Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2): 67–95. http://doi.org/10.1016/S0377-0273(00)00182-7
Allen, M.B., Jackson, J. and Walker, R., 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23(2): 1–16. https://doi.org/10.1029/2003TC001530
Amidi, S.M. and Zahedi, M., 1991. The Geological map of Kashan, Scale 1:250000, No. F7. Geological Survey of Iran, Tehran, Iran.
Arslan, M. and Aslan, Z., 2006. Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the eastern Pontides, Turkey. Journal of Asian Earth Sciences, 27(2): 177–193. https://doi.org/10.1016/j.jseaes.2005.03.002
Azizi, H. and Jahangiri, A., 2008. Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. Journal of Geodynamics, 45(4–5): 178–190. http://doi.org/10.1016/j.jog.2007.11.001  
Babaie, H.A., Ghazi, A.M., Babaei, A., La Tour, T.E. and Hassanipak, A.A., 2001. Geochemistry of arc volcanic rocks of the Zagros Crush Zone, Neyriz, Iran. Journal of Asian Earth Sciences, 19(1–2): 61–76. http://doi.org/10.1016/S1367-9120(00)00012-2
Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265. http://doi.org/10.1139/e81-019
Bezard, R., Hebert, R., Wang, C., Dostal, J., Dai, J. and Zhong, H., 2011. Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet. Lithos, 125(1–2): 347–367. http://doi.org/10.1016/j.lithos.2011.02.019
Condie, K., 1989. Plate tectonics and crustal evolution. Pergamon Press, Oxford, 476 pp.
Davoudzadeh, M., Soffel, H. and Schmidt, K., 1981. On the rotation of the Central-East Iran microplate. Neues Jahrbuch Geologie und Paläontologie, Abhandlungen, Monatshefte, 3: 180–192. http://doi.org/10.1127/njgpm/1981/1981/180
Dicheng, Z., Guitang, P., Xuanxue, M., Zhongli, L., Xinshenng, J., Liquan, W. and Zhidan, Z., 2007. Petrogenesis of volcanic rocks in the sangxiu Formation, central segment of Tethyan Himalaya: a probable example of plume-lithosphere interaction. Journal of Asian Earth Sciences, 29(2-3): 320–335. http://doi.org/ 10.1016/j.jseaes.2005.12.004
Douce, A.‌E.‌P., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: A. Castro, J.C. Fernández, C. Fernandez and J.L. Vigneresse (Editors), Understanding Granites: Integrating New and Classical Techniques. Geological Society of London Publications, Special Publication 168, London, pp. 55–75. https://doi.org/10.1144/GSL.SP.1999.168.01.0
Ellam, R.M., 1992. Lithospheric thickness as a control on basalt geochemistry. Geology, 20(2): 153–156. https://doi.org/10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2
Ewart, A. and Hawkesworth, C.J., 1987. The Pleistocene-Recent Tonga-Kermadec arc lavas: Interpretation of new isotopic and rare earth data in terms of a depleted mantle source model. Journal of Petrology, 28(3): 495–530. https://doi.org/10.1093/PETROLOGY/28.3.495
Fan, W.M., Guo, F., Wang, Y.J. and Lin, G. 2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. Journal of Volcanology and Geothermal Research, 121(1–2): 115–135. http://doi.org/10.1016/S0377-0273(02)00415-8
Ghadirpour, M., Ahmadian, J., Sherafat, S. and Mackizadeh, M.A., 2019. Petrogenesis of Tarq-Mazdeh volcanic rocks based on clinopyroxene chemistry (south of Natanz, Urumieh-Dokhtar volcanic belt). Journal of Economic Geology, 11(2): 305–320. (in Persian with English abstract) https://doi.org/10.22108/ijp.2020.116077.1126
Ghasemi, A. and Tabatabaei Manesh, S.M. 2015. Geochemistry and petrogenesis of Ghohroud igneous complex (Urumieh–Dokhtar zone): Evidence for Neotethyan subduction during the Neogene. Arabian Journal of Geosciences, 8(11): 9599–9623. http://doi.org/10.1007/s12517-015-1883-7
Ghasemi, A. and Talbot, C.J., 2006. A new scenario for the Sanandaj–Sirjan zone (Iran). Journal of Asian Earth Sciences, 26(6): 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003
Gill, J.B., 1981. Orogenic andesites and plate tectonics. Springer, Berlin, 390 pp.
Geng, Q.R., Sun, Z.M., Pan, G.T. and Zhu, D.C., 2009. Origin of the Gangdise (Transhimalaya) Permian arc in southern Tibet: Stratigraphic and volcanic geochemical constraints. Island Arc, 18: 467–487. http://doi.org/10.1111/j.1440-1738.2009.00664.x
Harris, N.B.W., Pearce, J.A. and Tindle, A.G., 1986. Geochemical characteristics of collision- zone magmatism. In: Coward M P, Ries A C (eds) collision tectonics. Geological Society, London, Special Publications, 19(1): 67–81. http://doi.org/10.1144/GSL.SP.1986.019.01.04
Helvaci, C., Ersoy, E.Y., Sözbilir, H., Erkül, F., Sümer, Ö. and Uzel, B., 2009. Geochemistry and 40Ar/39Ar geochronology of Miocene volcanic rocks from the Karaburun Peninsula: Implications for amphibole-bearing lithospheric mantle source, Western Anatolia. Journal of Volcanology and Geothermal Research, 185(3): 181–202. https://doi.org/10.1016/j.jvolgeores.2009.05.016
Hirschmann, M., 1992. Origin of the transgressive granophyres from the layered series of the Skaergaard Intrusion, East Greenland. Journal of Volcanology and Geothermal Research, 52(1–3): 185–207.  https://doi.org/10.1016/0377-0273(92)90140-9
Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055
Juteau, T. and Maury, R. (translated by Darvishzadeh, A.), 1997. Geologie de la Croute Oceanique: Petrologie et Dynamique Endogenes. Tehran University Press, Tehran, 568 pp.
Kampunzu, A.B., Tombale, A.R., Zhai, M., Bagai, Z., Majaule, T. and Modisi, M.P., 2003. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: Evidence for a Neoarchaean continental active margin in the Zimbabwe craton. Lithos, 71(2–4): 431–460.  https://doi.org/10.1016/S0024-4937(03)00125-7
Kawabata, H. and Shuto, K., 2005. Magma mixing recorded in intermediate rocks associated with high- Mg andesites from the Setouchi volcanic belt, Japan: Implications for Archean TTG formation. Journal of Volcanology and Geothermal Reserarch, 140(4): 241–271. http://doi.org/10.1016/j.jvolgeores.2004.08.013
Kelemen, P.B., Shimizu, N. and Dunn, T., 1993. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Science Letters, 120(3–4): 111–134. https://doi.org/10.1016/0012-821X(93)90234-Z
Kuscu, G.G. and Geneli, F., 2010. Review of post collisional volcanism in the Central Anatolian volcanic province (Turkey), with special reference to the Tepekoy volcanic complex. International Journal of Earth Sciences, 99(3): 593–621. https://doi.org/10.1007/s00531-008-0402-4
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.1093/petrology/27.3.745
 Le Roux, P.J. 2002. Crystallization processes beneath the southern Mid-Atlantic ridge (40-55° S), evidence for high-pressure initiation of crystallization. Contributions to Mineralogy and Petrology, 142(5): 318–332. http://doi.org/10.1007/s00410-001-0312-y
Liu, H., Sun, W.D, Zartman, R. and Tang, M., 2019. Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago. Nature Communications, 10(1): 3408.  http://doi.org/ 10.1038/s41467-019-11329-z
MacDonald, R., Hawakesworth, C.J. and Heath, E., 2001. The lesser Antilles volcanic chain: a study of arc magmatism. Earth-Science Reviews, 49(4): 17–26. http://doi.org/10.1016/S0012-8252(99)00069-0
Mattsson, H.B. and Oskarsson, N., 2005. Petrogenesis of alkaline basalts at the tip of apropagating rift: Evidence from the Heimaey volcanic centre, south Iceland. Journal of Volcanology and Geothermal Research, 147(3–4): 245–267. https://doi.org/10.1016/j.jvolgeores.2005.04.004
McKenzie, D. and O’Nions, R.K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021–1091. https://doi.org/10.1093/petrology/32.5.1021
Mikoshiba, M., Kanisawa, S., Matsuhisa, Y. and Togashi, S., 2004. Geochemical and isotopic characteristics of the Cretaceous Orikabe plutonic complex, Kitakami Mountains, Japan: Magmatic evolution in a zoned pluton and significance of a subduction-related mafic parental magma. Contributions to Mineralogy and Petrology, 146(4): 433–449. http://doi.org/10.1007/s00410-003-0512-8
Mitchell, C.H. and Widdowson, M., 1991. A geological map of the southern Deccan Traps, India and its structural implications. Journal of the Geological Society, 148(3): 495–505. https://doi.org/10.1144/gsjgs.148.3.0495
Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran. Journal of Asian Earth Sciences, 21(4): 397–412. https://doi.org/10.1016/S1367-9120(02)00035-4
Müller, D. and Groves, D.L., 1997. Potassic igneous rock and associated gold-copper mineralization. Springer International Publishing, Switzerland, 311 pp.
Müller, D. Rock, N.M.S. and Groves, D.L., 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic settings: A pilot study. Contributions to Mineralogy and Petrology, 46(4): 259–289. http://doi.org/10.1007/bf01173568
Murphy, J.B., 2006. Igneous rocks association 7. Arc Magmatism I: relationship between subduction and magma genesis. Geoscience Canada, 33(4): 145–167. Retrieved December, 2018 from https://journals.lib.unb.ca/index.php/GC/article/view/10222
Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5): 757–775. https://doi.org/10.1016/0016-7037(74)90149-5
Ozdemir, Y., Karaoglu, O., Tolluohlu, A.U. and Gulec, N., 2006. Volcanostratigraphy and petrogenesis of the Nemrat stratovolcano (East Anatollian High Plateau), the most recent post collisional volcanism in Turkey. Chemical Geology, 226(3–4): 189–221. https://doi.org/10.1016/j.chemgeo.2005.09.020
Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Chu, C.H., Lee, H.Y. and Lo, C.H., 2013. Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: Magma genesis and tectonic implications. Lithos, 180: 234–251. http://doi.org/ 10.1016/j.lithos.2013.05.009
Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: R.S. Thorpe (Editor), Andesites. John Wiley and Sons, New York, pp. 525–548.
Plechov, P.Y., Tsai, A.E., Shcherbakov, V.D. and Dirksen, O.V., 2008. Opacitization conditions of hornblende in Bezymyannyi volcano andesites (March 30, 1956 eruption). Petrology, 16‌(1): 19–35. http://doi.org/ 10.1134/S0869591108010025
Peccerillo A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–91. http://doi.org/10.1007/BF00384745
Poma, S., Quenardelle, S., Litvak, V., Maisonnave, E.B. and Koukharsky, M., 2004. The Sierra de Macon, plutonic expression of the Ordovician magmatic arc, Salta province, Argentina. Journal of South American Earth Sciences, 16(7): 587–697. https://doi.org/10.1016/j.jsames.2003.10.002
Reichow, M., Saunders, A.D., White, R.V., AlʹMukhamedov, A.I. and Medvedev, A.Y., 2005. Geochemistry and petrologenesis of basalts from the West Siberian Basin: An extension of the Permo Triassic Siberian Traps, Russia. Lithos, 79(3–4): 425–452. http://doi.org/ 10.1016/j.lithos.2004.09.011
Rudnick, R.L. and Gao, S., 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1–64. https://doi.org/10.1016/0016-7037(95)00038-2
Saccani, E., Delavari, M., Beccaluva, L. and Amini, S., 2010. Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos, 117(1–4): 209–228. http://doi.org/10.1016/j.lithos.2010.02.016
Sayari, M. and Sharifi, M., 2016. Application of clinopyroxene chemistry to interpret the physical conditions of ascending magma, a case study of Eocene volcanic rocks in the Ghohrud area (north of Isfahan). Journal of Economic Geology, 8(1): 61–78. (in Persian with English abstract)  http://doi.org/10.22067/econg.v8i1.38857
Soesoo, A., 2000. Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: An example from the Lachlan Fold Belt, Australia. Journal of the Geological Society, 157(1): 135–149. http://doi.org/1 0.1144/jgs.157.1.135
 Stolz, A.J., Jochum, K.P., Spettel, B. and Hofmann, A.W., 1996. Fluid and melt related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island arc basalt. Geology, 24(7): 587–590. http://doi.org/ 10.1130/0091-7613(1996)024<0587:FAMREI>2.3.CO;2
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean basins. Geological Society of London Publications, Special Publication 42, London, pp. 313–345. http://doi.org/ 10.1144/GSL.SP.1989.042.01.19
Tatsumi, Y., Hamilton, D.L. and Nestutt, R.W., 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc lavas: Evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research, 29(1–4): 293–309. https://doi.org/10.1016/0377-0273(86)90049-1
Sirvastava, R.K. and Singh, R.K., 2004. Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dikes from the central Indian craton: Evidence for mantle metasomatism. Journal of Asian Earth Sciences, 23(3): 373–389. https://doi.org/10.1016/S1367-9120(03)00150-0
Vahdati Daneshmand, F., 2006. Geological map of Maimeh, Scale 1:100000, Sheet No. 6256. Geological Survey of Iran. Tehran, Iran.
Widdowson, M., Pringle, M.S. and Fernandez, O.A., 2000. A post K-T boundary (Early Palaeocene) age for Deccan type feeder dykes, Goa, India. Journal of Petrology, 41(7): 1177–1194. https://doi.org/10.1093/petrology/41.7.1177
Wilson, M., 1989. Igneous petrogenesis: A global tectonic approach. Springer, Netherlands, 466 pp.  
Wilson, M. and Downes, H. 1991. Tertiary-Quaternary extension related alkaline magmatism in western and central Europe. Journal of Petrology, 32(4): 811–849. https://doi.org/10.1093/petrology/32.4.811
Winchester, J.A. and Floyd, P.A., 1997. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(4): 325–343. https://doi.org/10.1016/0009-2541(77)90057-2
Winter, J.D., 2001. An introduction to igneous and metamorphic petrology. Prentice Hall, New Jersey, 796 pp.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Woodhead, J., Eggins, S. and Gamble, J., 1993. High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters, 114(4): 491–504. https://doi.org/10.1016/0012-821X(93)90078-N
Xie, J., Yang, X., Sun, W. and Du, J., 2012. Early Cretaceous dioritic rocks in the Tongling region, eastern China: Implications for the tectonic settings. Lithos, 150: 49–61. http://doi.org/10.1016/j.lithos.2012.05.008
CAPTCHA Image