Environmental geochemistry of potentially toxic elements in tailing of the Ahangaran Pb-Zn mine, Hamadan province

Mahrokh Ghanbari Mohazzab 1, Giti Forghani Tehrani 2*, Afshin Qishlaqi 3

1 Msc Student, Department of Environmental Geology and Hydrology, Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran
2 Associate Professor, Department of Environmental Geology and Hydrology, Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran
3 Assistant Professor, Department of Environmental Geology and Hydrology, Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran

The present study aims to investigate the environmental geochemistry of potentially toxic elements (PTEs) in tailing samples of the Ahangaran Pb-Zn mine, located 95 km southeast of Hamadan. For this purpose, physico-chemical properties of 14 tailing samples, mineralogy and the concentration of PTEs were studied. The values of pH, carbonate content, and cation exchange capacity (CEC) ranged between 7.7-9.4, 50.5-64.5 %, and 27.3-35.1 meq/100g, respectively. The main clay mineral detected in the studied samples was montmorillonite; quartz and siderite were the most frequent mineral phases in the samples. The tailing samples, based on the total concentration of potentially toxic elements and the calculation of environmental indices, were enriched in Pb, Zn, Cd, As and Ag, and were of high ecological risk. Human Health Risk Assessment (HHRA) revealed that the hazard quotient of PTEs was much higher for children than adults. The highest values of non-carcinogenic risks via ingestion, dermal contact and inhalation were obtained for As, Mn, and Cd, respectively. The ingestion of As, Cd, and Cr for children, and the ingestion of Cd for adults are associated with probable carcinogenic risks. Based on the obtained results, disposed tailings around the Ahangaran mine can be considered a potential source to pollute the groundwater resources and agricultural soils. Therefore, appropriate environmental management of waste disposal as well as taking remediation actions deem necessary.

How to cite this article

©2024 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
EXTENDED ABSTRACT

Introduction
During the last decades, extensive anthropogenic activities around the world enhanced the input of PTEs into different compartments of the environment. Mining, processing, and smelting of sulfidic ores are considered the most important source of PTEs in the environment. The waste materials produced during the ore processing (i.e., tailings) have been classified as threatening hazardous wastes that need specific environmental management and treatment (Banerjee et al., 2023).

Ahangaran mine located 95 km SE Hamadan is a large Pb-Zn producer wherein the ore mineral is processed by flotation, and the produced tailings are dumped in tailing ponds around the mine. The present study aims to investigate the concentration and environmental geochemistry of PTEs in mine tailings and to assess the human health risk imposed by PTEs through the standard method of USEPA (1989).

Materials and methods
Sampling, sample preparation and analyses
14 surface composite tailings samples were collected from the tailing ponds (0-30 cm) by a stainless steel trowel. The samples were dried at room temperature, pH, carbonate content, and cation exchange capacity (CEC) of the samples were determined in particles < 0.15 mm. To determine the total concentration of major and trace elements, 1gr of tailings passed through a 230 mesh sieve (63 μm) was digested by a mixture of hot concentrated acids (HF + HClO₄ + HCl + HNO₃) in the open system (Jeffery and Hutchinson, 1981). The concentrations of major and trace elements in the digested solutions were measured by an ICP-OES instrument.

pH was determined using the standard method of the USEPA test method (USEPA, 1998). The carbonate content was measured by titration method, and CEC was determined based on the USEPA standard method (USEPA, 1990). X-Ray Diffraction (XRD) method was used to investigate the mineralogy of the samples.

Results and discussion
The physico-chemical properties of tailing samples
pH of the tailing samples varies between 7.7 and 9.4.

The neutral to alkaline nature of the samples may enhance the bioavailability of metalloids such as As and Sb. The average amount of carbonate content in the samples is 55.9%, which is in accordance with the alkaline pH of the studied samples. Based on the Metson classification (Metson, 1956), the samples are classified as high CEC. XRD analysis of the samples shows that the predominant clay mineral in the studied samples is montmorillonite, which explains the high CEC values of the studied samples.

Concentrations of major and trace elements in tailing samples
The average concentration of elements (mg/kg) in the studied samples decreases in the following order: Fe > Mn > Pb > Al > Zn > Cu > Sb > Ni > Th > As > Co > V > Cr > Cd > Ag > Sc

The average concentrations of PTEs in the tailings samples are much higher than their respective values in the mean crust composition; therefore, the tailings of the Ahangaran mine may enhance the concentration of PTEs in soils, cultivated crops, and groundwater of the adjacent area. In order to assess the level of contamination, the geoaccumulation index (Igeo) was calculated as follows:

\[
I_{geo} = \log_2 \left(\frac{C}{B} \right) \frac{1}{1.5B}
\]

where \(C \) and \(B \) are the target element’s concentration in the study sample and the reference material (mean crust composition), respectively.

According to the classification of the geoaccumulation index, the studied samples are very highly polluted in Pb, Sb and Ag.

The enrichment factor (EF) is calculated using the normalized ratio of target element (x) in the study sample to the respective value in the reference (background) material:

\[
EF = \frac{\left(\frac{x}{RE} \right)_{sample}}{\left(\frac{x}{RE} \right)_{background}}
\]

RE refers to the concentration of a normalizing element (Sc). The mean crust composition was considered the background sample. On the basis of the obtained results, the studied samples are characterized as extremely high enriched in Pb, Sb, Ag, Mn, Zn, Cd, As, very high enriched in Th and Cu, significantly enriched in Fe, Co, Mo, and moderately enriched in Ni, Cr, and V.

Håkanson (1980) defined the Potential Ecological Risk Index (PERI) as follows:

\[
PERI = \sum_{i=1}^{n} E_i = \sum_{i=1}^{n} Ti \times Ci
\]
where E_i and T_i are the ecological risk index and biological toxicity factor, respectively. The obtained PERI values of all tailing samples are much higher than 600; thus the ecological risk imposed by tailings is very high and suitable measures should be taken to reduce the pollution level in the study area.

To assess the human health risk imposed by high levels of PTEs in the tailing samples, the average daily dose (ADD, mg/kg/day) of each element through ingestion, inhalation, and dermal contact routes as was calculated:

$$ADD_{\text{ing}} = \frac{c \times R_{\text{ing}} \times CF \times EF \times ED}{BW \times AT}$$

$$ADD_{\text{derm}} = \frac{c \times SA \times CF \times SL \times ABS \times EF \times ED}{BW \times AT}$$

$$ADD_{\text{inh}} = \frac{c \times R_{\text{inh}} \times EF \times EF}{P\times BW \times AT}$$

The Hazard Quotient (HQ) of each pathway was obtained to assess the non-carcinogenic risk of each target element (USEPA, 1989):

$$HQ = \frac{ADD}{RfD}$$

Where RfD is the reference dose (mg/kg/day). While $HQ \leq 1$ indicates that there is no non-carcinogenic risk, $HQ > 1$ shows that non-carcinogenic risks are probable through a certain exposure route. Hazard index (HI) is also an indicator of probable non-carcinogenic health risks:

$$HI = \sum_{i=1}^{n} HQ_i$$

n refers to the number of the studied elements. If the value of HI is ≤ 1, there is no adverse health effects. HI > 1 indicates likely adverse health effects. Human health risk assessment shows that the HQ values of target elements is higher in children than in adults. The highest non-carcinogenic risk for digestion, inhalation and dermal contact is related to As, Mn, and Cd, respectively. The ingestion of As, Cd, and Cr for children and ingestion of Cd for adults is associated with probable carcinogenic risks.

Conclusion

Based on the total concentration of PTEs in the samples and the values of geochemical indices, the studied tailings are highly polluted with Pb, Sb, Mn, Zn, Cu, As, Cd, and Ag. Human health risk assessment shows that ingestion is the most important route for element’s exposure, and children are at higher risks. The highest values of non-carcinogenic risks through ingestion, inhalation and dermal contact pathways were obtained for As, Mn, and Cd, respectively. The ingestion of As, Cd, and Cr for children, and the ingestion of Cd for adults are associated with probable carcinogenic risks.

Acknowledgment

The authors gratefully acknowledge the financial support of the Research Office of the Shahrood University of Technology.
چکیده
هدف از این پژوهش، بررسی زمین‌شیمی زیست محیطی عناصر بالو و سیم بالو در بافت‌های فرآوری معدن سرب و روی آهنگران، استان همدان می‌باشد.

واژه‌های کلیدی
آلودگی، بافت و سیستم معدنی، آهنگران، استان همدان، میکروسکوپی فیزیکی، اسیدیت یوگن در بررسی عناصر معدنی (pH) و نمونه‌های بافتی در محدوده pH 7/0 تا 4/9 در صید و رفتار اکسیداسیون بین 3/27 تا 1/35 میلی‌الکترمی و مول剩下的 بی‌آلودی، کربنات بین 5/50 تا 5/64 درصد و رفتار تبادل کاتیونی بین 27/3 تا 17/05 میلی‌الکترمی و مول剩下的 بی‌آلودی می‌باشد. میکروسکوپی فیزیکی نشان می‌دهد که اکسیداسیون غلیظ‌گردی و خطر سیستمی در بررسی عناصر مختلف در فرآوری معدن سرب و روی آهنگران، استان همدان است.

اطلاعات مقاله
تاریخ دریافت: 1/14/1402
تاریخ بازخوانی: 2/24/1402
تاریخ پذیرش: 2/28/1402

نویسنده مسئول
گیتی فرقانی تترانی
forghani@shahroodut.ac.ir

استاد بیانیه‌های فارسی و چینی مورد استفاده بودند.
پیش‌روی فارویی‌های فارویی باعث توسفه‌ی عالی‌های معدنی و افزایش حجم باطن‌های فارویی شده است. بررسی‌های مختلفی که در سراسر جهان انجام‌شده است تا تأیید نشان دهد که باطن‌های حاصل از فارویی عایق آبی درکه خاک‌ها و محصولات زراعی در محیط‌های بیپارسان معدنی، شهید که در 2010، Forghani et al., 2015؛ Mehrabi et al., 2018؛ Shamsipoor, 2018؛ Davoodifard et al., 2019؛ Galjek درآمدها منفی بیبیو پسشی‌ها و افزایش فعالیت معدنی سدگی‌ها از جمله معدن‌های آهنگران یکی از بزرگ‌ترین پایگاه‌های سدگی‌های در نزدیکی زمین‌های سیستمی‌های اقتصادی شده است.

بعضی از عوامل فعالیت معدنی شامل عوامل زیر هستند:

1. عوامل فنی: این عوامل شامل عوامل زیر هستند:
 a) عوامل فنی: این عوامل شامل عوامل زیر هستند:
 b) عوامل فنی: این عوامل شامل عوامل زیر هستند:

2. عوامل مالی: این عوامل شامل عوامل زیر هستند:
 a) عوامل مالی: این عوامل شامل عوامل زیر هستند:
 b) عوامل مالی: این عوامل شامل عوامل زیر هستند:

3. عوامل اجتماعی: این عوامل شامل عوامل زیر هستند:
 a) عوامل اجتماعی: این عوامل شامل عوامل زیر هستند:
 b) عوامل اجتماعی: این عوامل شامل عوامل زیر هستند:

4. عوامل محیطی: این عوامل شامل عوامل زیر هستند:
 a) عوامل محیطی: این عوامل شامل عوامل زیر هستند:
 b) عوامل محیطی: این عوامل شامل عوامل زیر هستند:

5. عوامل سیاسی: این عوامل شامل عوامل زیر هستند:
 a) عوامل سیاسی: این عوامل شامل عوامل زیر هستند:
 b) عوامل سیاسی: این عوامل شامل عوامل زیر هستند:
آتب و هوای زمین شناسی منطقه

منطقه آهنگران ناحیه کویستانی بوشهر چه دراری زمستان‌های
سینی و در باره یی انجام شده و نتایج معنایی است. بررسی
آماره‌ها که کویستان‌های زیرین درج، متوسط درجه حرارت انرژی در
میان این منطقه آهیق بیش‌تری از نظر فعالیت کیارخانه
آهنگران، موسوم به شکن و هزینه، از مناطق حفاظتی شده
فیزیکی و اکسترا بارشی در روزانه فاوا بسیاری است. که در ۱۰۱۰ سال
 znajduje się jeden z największych przedsiębiorstw na świecie.

DOI: 10.22067/ECONG.2024.85154.1094

زمین شناسی اقتصادی، ۱۲۱، شماره ۱، صفحه ۳۰
ثبت معدن کانسیار آهنگران حاوی کانی‌های هماتیت، لیموسین، گالن و سیمیدیت است و سنگ‌های میزانی این ذخیره، آهکی کوارتزیتی و ماسیه سنگی است. ذخیره معدن آهنگران شامل 1 میلیون تن کانسیار آهن و 1500 تن کانسیار سرب و روی است. عبارت 25 درصد، سرب 6 تا 13 درصد، روی 7 تا 25 درصد و نقره 200 گرم در سنگ آلیه است. سالانه حدود 40000 تن سنگ آلیه به روش روباز و بلکات و 2000 تن سنگ آلیه و روی توسط نیروهای زیرزمینی استخراج می‌شود (Centre of Iran, 2016). DOI: 10.22067/ECONG.2024.85154.1094

روش مطالعه
نمونه‌برداری، آماده‌سازی، و تجزیه شیمیایی نمونه‌ها
پس از انجام بررسی‌های میدانی و با توجه به اندازه نمونه‌برداری از بخش‌های کانسیار، سدایی، و با توجه به مکان نمونه‌برداری 14 نمونه با استفاده از فنیکس برداشت شد (شکل 1). نمونه‌های از سطح سدایی با میزان 30 سانتی‌متری، توسط بلچه فولادی برداشته شد. نمونه‌هایی از سنگ آلیه و روی توسط ابزارهای مختلف مختلفی برداشته شد. نمونه‌هایی از سنگ آلیه و روی توسط ابزارهای مختلف مختلفی برداشته شد. نمونه‌هایی از سنگ آلیه و روی توسط ابزارهای مختلف مختلفی برداشته شد.
کاتیونی، به شکل کربنات از کلیت 15 میلی متری استفاده شد. برای تعیین غلظت کل عنصر اصلی و جزئی، مقدار یک گرم باتری از کربنات سیستمی، در فلزات نمونه، در صورتی که حالت های حاد و نرم پیشده، تغییر این یک بیشتری از سیستم دیگری دارد (Zhang et al., 2008). تغییر این یک بیشتری از سیستم دیگری دارد

Ge et al., 2000. (Zhang et al., 2008; Akkajit and Tongcumpou, 2010)

به طور کلی، pH در هیای اسیدی، انتقال و تحرک گونه‌های کاتیونی بیشتر است. در حالت که بیشتر کاتیون‌ها در pH قلیایی بالا بیشتر هستند، به ترتیب تحرک بیشتری خواهند داشت. از سوی دیگر، تحرک بیشتر شیء‌هایی با pH بالا رفت و نشست هستند. تعیین pH از لحاظ ظرفیت افزایش و تحرک آن‌ها در تمرود کلیت 1 میلی غرم بر کیلوگرم (Akkajit and Tongcumpou, 2010)

Fytianos et al., 2001

برای عنصر گوگرد، 50 میلی غرم بر کیلوگرم، برای عنصر سیستم 5 میلی غرم بر کیلوگرم، برای عنصر کلیت، گروه، مس، و تلای ویژگی اینماندان و تغییر در ظرفیت افزایش و تحرک آلاینده

Ge et al., 2000.

(Han et al., 2020.)

با ابزار نمایشی pH در محدوده pH 4 تا 7/7 تمکن می‌کند. طبق استانداردهای علمی آمریکا، نمونه‌های بارگیرشده مورد بررسی از pH در رده کمی قلیایی با شدت قلیایی قرار می‌گیرند که این مشاهده‌ها با توجه به نوع کاتسنج (کارزینیت) و پالن‌های سنگی منطقه و به کار بدن مواد قلیایی مانند کربنات مسیدیم و هیدروکسید سدیم منوط به فرانک وارد کاتسنج به روش شناساوارسی قابل توجه است. قلیایی بیوئیان نمونه‌ها باعث افزایش تعکس شیء‌های فیزیکی مانند (Han et al., 2020.)

همکاران

میلی درصد به دلیل افزایش تحرکی گروه‌های آنالیز اصولی و همچنین افزایش هر کیلوگرم، برای عنصر اکسید (ICP-OES)

SPEX CertiPrep, Metuchen, NJ., CLAS2-2Y, (CLCA2-2Y, CLPB2-2Y, CLZN2-2Y)

میلی 1403 میلی‌گرم بر کیلوگرم، برای عنصر منگنز (USEPA 1998.)

Method 9045D

HCl measure کربنات کلیم در طی انتقال از روش مورد استفاده

Jaiswal, 2004)

USEPA 9081A

با 4 متری اکسید D8-Advance

کاتیونی نمونه‌ها استفاده شد.
خاک با باطله‌ای برای جذب و رهام‌زی عناصر نشان دهد. قدرت تبادل کاتیونی عبارت است از بیشینه مقدار کاتیونی که وزن معینی از نمونه به دلیل دارای بارهای منفی، قادر اسییت در خود جذب یا نگتداری کند (Brady and Weil, 2008).

جدول 1. مؤلفه‌های فیزیکوشیمیایی نمونه‌های باطله‌ای فراوری معدن آهنگران

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>pH</th>
<th>Carbonate (%)</th>
<th>CEC (meq/100g)</th>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.7</td>
<td>22.5</td>
<td>27.3</td>
<td>51.2</td>
<td>36.8</td>
<td>12.0</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>2</td>
<td>8.1</td>
<td>50.5</td>
<td>31.2</td>
<td>59.0</td>
<td>30.8</td>
<td>10.2</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>3</td>
<td>8.6</td>
<td>57.5</td>
<td>-</td>
<td>68.0</td>
<td>18.2</td>
<td>13.8</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>4</td>
<td>9.1</td>
<td>58.0</td>
<td>35.1</td>
<td>58.0</td>
<td>27.6</td>
<td>14.4</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>5</td>
<td>9.4</td>
<td>55.5</td>
<td>33.3</td>
<td>59.6</td>
<td>27.8</td>
<td>12.6</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>6</td>
<td>9.2</td>
<td>52.5</td>
<td>-</td>
<td>65.3</td>
<td>25.0</td>
<td>9.7</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>7</td>
<td>8.9</td>
<td>51.0</td>
<td>-</td>
<td>70.0</td>
<td>21.0</td>
<td>9.0</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>8</td>
<td>8.8</td>
<td>53.5</td>
<td>31.2</td>
<td>77.0</td>
<td>7.0</td>
<td>16.0</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>9</td>
<td>8.4</td>
<td>56.0</td>
<td>31.9</td>
<td>50.4</td>
<td>35.6</td>
<td>14.0</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>10</td>
<td>8.7</td>
<td>56.0</td>
<td>-</td>
<td>55.0</td>
<td>30.4</td>
<td>14.4</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>11</td>
<td>8.8</td>
<td>53.0</td>
<td>-</td>
<td>67.0</td>
<td>25.4</td>
<td>7.6</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>12</td>
<td>8.8</td>
<td>53.5</td>
<td>-</td>
<td>70.4</td>
<td>21.6</td>
<td>8.0</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>13</td>
<td>8.6</td>
<td>55.5</td>
<td>-</td>
<td>73.0</td>
<td>21.6</td>
<td>8.0</td>
<td>Sandy-loam</td>
</tr>
<tr>
<td>14</td>
<td>8.6</td>
<td>58.5</td>
<td>-</td>
<td>70.2</td>
<td>19.8</td>
<td>10.0</td>
<td>Sandy-loam</td>
</tr>
</tbody>
</table>
Fig. 2. XRD spectrum of a tailing sample of Ahangaran Mine

Fig. 3. The quantitative mineralogical composition of a representative tailing sample of the Ahangaran Mine
توزیع عناصر آلوده‌شده در نمونه‌ها به وسیله ابعاد نمونه‌ها، با توجه به زاید بودن فاصله درصد ذرات داخل‌نشست در بیشتر نمونه‌ها، نمونه‌ها در یک‌نقطه به دو جزء بافت قرار دارند. در این نوع بافت، به دلیل کمتر بودن درصد رس، فلزها به راحتی وارد آب‌های بین بافت و در نهایت وارد آب‌های زیرزمینی می‌شوند (He et al., 2000).

شکل 4. بافت نمونه‌های بالله فرآوری بر روی مثبت رده‌بندی بافت USDA Fig. 4. The tailing samples texture on the USDA classification triangle

آنتیمون و روی ناشان‌دهنده تأثیر احتمالی مؤلفه‌های فیزیکی-شیمیایی نمونه‌های بالله بر روی نمای زیرک عناصر پایه‌ی هم‌کاران است. مقادیر میانگین توزیع عناصر بالقوه سیمی در نمونه‌های بالله معدن آهنگران با ترکیب میانگین پوسته‌ای (جدول 2) نشان می‌دهد که متوسط توزیع عناصر فلزی، آرسنیک، کادمیوم، مس، آهن، منگنز، سرب، گوگرد، آنتیمون، توریم و روی در نمونه‌ها بیش از مقدار آنها در ترکیب میانگین پوسته است (شکل 5).
جدول ۲. آمار توصیفی غلظت عناصر بالووه سییمه در نمونه‌های باهله فراوری معدن آهنگران در موایسه با ترکی پوسته میانگین* (مقادیر غلظت بر حسب mg/kg)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>مین</th>
<th>مکس</th>
<th>میانگین</th>
<th>تغییر معیار</th>
<th>چربی مانیا</th>
<th>فاصله</th>
<th>میانگین پوسته میانگین*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>8.2</td>
<td>12.4</td>
<td>10.42</td>
<td>1.3</td>
<td>0.12</td>
<td>-0.99</td>
<td>-0.08</td>
</tr>
<tr>
<td>Al</td>
<td>2215</td>
<td>5642</td>
<td>3806.8</td>
<td>1060.2</td>
<td>2.18</td>
<td>-0.95</td>
<td>۰.۱</td>
</tr>
<tr>
<td>As</td>
<td>14.5</td>
<td>40.5</td>
<td>22.9</td>
<td>8.5</td>
<td>0.37</td>
<td>-0.37</td>
<td>۰.۱</td>
</tr>
<tr>
<td>Cd</td>
<td>1.1</td>
<td>77.5</td>
<td>12.7</td>
<td>23.4</td>
<td>0.12</td>
<td>4.47</td>
<td>۲.۲۷</td>
</tr>
<tr>
<td>Co</td>
<td>6</td>
<td>28</td>
<td>18.7</td>
<td>6.2</td>
<td>0.32</td>
<td>0.33</td>
<td>-0.85</td>
</tr>
<tr>
<td>Cr</td>
<td>9</td>
<td>28</td>
<td>17.1</td>
<td>5.3</td>
<td>0.30</td>
<td>0.09</td>
<td>۰.۱۲</td>
</tr>
<tr>
<td>Cu</td>
<td>56</td>
<td>229</td>
<td>122.6</td>
<td>53.5</td>
<td>0.43</td>
<td>-0.06</td>
<td>۰.۸۱</td>
</tr>
<tr>
<td>Fe</td>
<td>100000</td>
<td>99003</td>
<td>26414.4</td>
<td>40703.9</td>
<td>1.54</td>
<td>-0.48</td>
<td>۱.۱۵</td>
</tr>
<tr>
<td>Mn</td>
<td>1490</td>
<td>14072</td>
<td>10690.2</td>
<td>4041.2</td>
<td>2.61</td>
<td>-1.29</td>
<td>-۱.۴</td>
</tr>
<tr>
<td>Mo</td>
<td>0.6</td>
<td>2.2</td>
<td>1</td>
<td>0.5</td>
<td>0.47</td>
<td>0.58</td>
<td>۱.۱۹</td>
</tr>
<tr>
<td>Ni</td>
<td>14</td>
<td>47</td>
<td>33.6</td>
<td>8.7</td>
<td>0.25</td>
<td>۱.۸۱</td>
<td>-۱.۲۳</td>
</tr>
<tr>
<td>Pb</td>
<td>5530</td>
<td>12202</td>
<td>8687.6</td>
<td>1962.2</td>
<td>0.22</td>
<td>-0.43</td>
<td>۰.۳۴</td>
</tr>
<tr>
<td>S</td>
<td>1498</td>
<td>10272</td>
<td>4581.4</td>
<td>2708.5</td>
<td>0.59</td>
<td>-0.27</td>
<td>۰.۶۸</td>
</tr>
<tr>
<td>Sb</td>
<td>3.1</td>
<td>238.2</td>
<td>64.1</td>
<td>86.4</td>
<td>1.80</td>
<td>0.35</td>
<td>۱.۴۱</td>
</tr>
<tr>
<td>Sc</td>
<td>1.8</td>
<td>2.5</td>
<td>2.2</td>
<td>0.2</td>
<td>0.66</td>
<td>0.۳۳</td>
<td>۰.۲</td>
</tr>
<tr>
<td>Th</td>
<td>7.6</td>
<td>52.7</td>
<td>26.6</td>
<td>18.0</td>
<td>3.28</td>
<td>-1.۹۰</td>
<td>۰.۳۸</td>
</tr>
<tr>
<td>V</td>
<td>10</td>
<td>30</td>
<td>17.7</td>
<td>6.6</td>
<td>0.۳۶</td>
<td>-۱.۰۰</td>
<td>۰.۲۳</td>
</tr>
<tr>
<td>Zn</td>
<td>0.3</td>
<td>28612</td>
<td>3666.2</td>
<td>7699</td>
<td>۱.۷۶</td>
<td>9.۷۷</td>
<td>۳.۰۶</td>
</tr>
</tbody>
</table>

* Mason and Moore, 1982

شکل ۵. غلظت میانگین عناصر مورد بررسی در باهله فراوری معدن آهنگران در مقایسه با ترکیب پوسته میانگین

Fig. 5. The concentration of studied elements in tailing samples of the Ahangaran Mine compared with the composition of the Mean Crust

DOI: 10.22067/ECONG.2024.85154.1094
با توجه به این نتایج می‌توان چنین استنباط کرد که باطله‌های فراوری معدن سرب و روی آهنگران به عنصر باشندگه آلوده هستند و در ترتیب پتانسیل آلودگی منابع آب سطحی و زیرزمینی، خاک‌ها و محصولات زراعی اطراف معدن و همچنین بریجای گذاشتند اثر منفی بر سلامت ساکنان پیرامون معدن را دارند.

ارزیابی کمی آلودگی نمونه‌ها به عنصر بالقوه سنتی با استفاده از شاخص‌های زیست محیطی به منظور ارزیابی کمی شدیدت آلودگی نمونه‌های باطله‌های معدن آهنگران، شاخص‌های زیست محیطی (ضریب زیست‌ناباشت، ضریب غنی‌شدن، و خطر بالقوه زیست محیطی) محاسبه شد (مولر، 1969).

Table 3. The pollution intensity of the Ahangaran Mine tailings on the basis of the classification of geoaccumulation index (Müller, 1969)

<table>
<thead>
<tr>
<th>Igeo Class</th>
<th>Igeo value</th>
<th>Pollution degree</th>
<th>Studied samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>≤1</td>
<td>Unpolluted</td>
<td>Al, Sc, V, Cr, Ni, Mo, Co</td>
</tr>
<tr>
<td>1</td>
<td>1-0.5</td>
<td>Unpolluted to moderately polluted</td>
<td>Fe, Cu, Th</td>
</tr>
<tr>
<td>2</td>
<td>1-2</td>
<td>Moderately polluted</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2-3</td>
<td>Moderately to highly polluted</td>
<td>As, Mn</td>
</tr>
<tr>
<td>4</td>
<td>3-4</td>
<td>Highly polluted</td>
<td>Zn, Cd</td>
</tr>
<tr>
<td>5</td>
<td>4-5</td>
<td>Highly polluted to very highly polluted</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>>5</td>
<td>Very highly polluted</td>
<td>Sb, Ag, Pb</td>
</tr>
</tbody>
</table>

Igeo = \log_2 \left(\frac{C_i}{B_i} \right)

به ترتیب قطعات عنصر در نمونه مورد بررسی و نمونه مرجه است. ضریب 1/5 ضریب تغییرات ناشی از تغییرات سنگ‌شناختی است. در این تمرین از ترکیب پوسته ملایم‌گی به عنوان نمونه مرجه استفاده شد. مولر کلمه‌ای از ضریب زیست‌ناباشت را به هفت رده تقسیم کرده است (جدول 3). با توجه به رده‌بندی ضریب زیست‌ناباشت، نمونه‌های مورد بررسی نسبت به آن‌هایی نتیجه‌گذاری شده ۵/۱ به مرحله‌ی ضریب زیست‌ناباشت، نمونه‌های مورد بررسی نسبت به آن‌هایی نتیجه‌گذاری شده ۵/۱ به مرحله‌ی ضریب غنی‌شدن و خطر بالقوه زیست محیطی محاسبه شد.
دانست‌های اقتصادی، 1403، دوره 16، شماره 1
 DOI: 10.22067/ECONG.2024.85154.1094

مقاله 4: مقدار ضریب بتنجارکننده هواهای بافته‌های فراوری معدن آهنگران اساسا به صورت تایید مشخص نشان می‌دهد که مناسبی برای ضریب بتنجارکننده مورد استفاده است (Ugwanga and Kgabi, 2020).

جدول 4. مقادیر ضریب بتنجارکننده نمونه‌های بافته‌های فراوری معدن آهنگران بر اساس رده‌بندی مقادیر ضریب بتنجارکننده (Ugwanga and Kgabi, 2020)

<table>
<thead>
<tr>
<th>EF Class</th>
<th>Enrichment degree</th>
<th>Studied samples</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>Deficiency to minimal enrichment</td>
<td>Sc, Al</td>
</tr>
<tr>
<td>2-5</td>
<td>Moderate enrichment</td>
<td>Ni, Cr, V</td>
</tr>
<tr>
<td>5-20</td>
<td>Significant enrichment</td>
<td>Fe, Co, Mo</td>
</tr>
<tr>
<td>20-40</td>
<td>Very high enrichment</td>
<td>Th, Cu</td>
</tr>
<tr>
<td>>40</td>
<td>Extremely high enrichment</td>
<td>Pb, Sb, Ag, Mn, Zn, Cd, As</td>
</tr>
</tbody>
</table>

با توجه به داده‌های به دست آمده، نمونه‌های فراوری معدن آهنگران به صورت تایید مشخص نشان می‌دهد که مناسبی برای ضریب بتنجارکننده مورد استفاده است (Ugwanga and Kgabi, 2020).

مناسب باتلاقه‌های فراوری را مورد تایید قرار می‌دهد. (Håkanson, 1980)

در این رابطه,

\[RI = \sum_{i=1}^{n} E_i = \sum_{i=1}^{n} T_i \times C_i \]

در این رابطه، \(E_i \) خاص ضریب بتنجارکننده برای یک آلاینده خاص \(T_i \) عامل ضریب زیست محیطی برای یک آلاینده خاص \(C_i \) و \((As=10, \text{Cu}=5, \text{Pb}=5, \text{Zn}=1) \)

دست‌های به داده‌های به دست آمده، نمونه‌های فراوری معدن آهنگران به صورت تایید مشخص نشان می‌دهد که مناسبی برای ضریب بتنجارکننده مورد استفاده است (Ugwanga and Kgabi, 2020).
عنصر در نمونه به مقدار زمینه است. در جدول ۵، رده بندی پیشنهاد شده توسط هاکنسن (۱۹۸۰) برای شاخص خطر بالووه سرمایه در باهله مورد بررسی ارائه شده است.

Table 5. Classification of the Potential Ecological Risk Index (PERI)

<table>
<thead>
<tr>
<th>Risk classification</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk</td>
<td>150 < RI</td>
</tr>
<tr>
<td>Moderate risk</td>
<td>300 < RI ≤ 150</td>
</tr>
<tr>
<td>Considerable risk</td>
<td>600 < RI ≤ 300</td>
</tr>
<tr>
<td>Very high risk</td>
<td>600 > RI</td>
</tr>
</tbody>
</table>

Fig. 6. A The values of Ecological Risk Index (E_i) of Pb, Zn, Cu, As, Cd, and B the Potential Ecological Risk Index (PERI) values of the Ahangaran Mine tailings
مقادیر شاخص خطر بالقوه بومی کودکان به دست آمده برای همه نمونه‌ها بیشتر از عدد ۶۰۰ است. با این حال به رهبران (Håkanson, 1980) هاکانسون (۱۹۸۰) با توجه به رهبران پژوهشگران دارای خطر بالقوه بومی کودکان به ترتیب ۲۴۰ و ۲۱۰ پژوهشگر داد.

ارزیابی خطر سل سالماتی

فسانسی بادی و آبی بیناله‌های فراوری می‌تواند باعث آگاهی در تعداد زیادی از زیست‌شناسی، هوا، اثرات مطبوعی و زیست‌شناسی شود. با توجه به واقع‌شدن، روش‌شناسي متعدد در پرمارون معضل به ویژه در بانک در حال گذشتن (زیست‌شناسی و شماره محلی ارزیابی خطر سالماتی قرار می‌گیرد و در طی قرار گیری و در روزانه از هریح بلع، تماد پوسیتی و اسیتنشیام میزان ارزیابی شرایط آن‌ها به عنوان بالقوه بسیار از مسیرهای بلوغ، استنشاق و تامس پوستی ضروری است. بازی بررسی میزان در معرض قرار گیری آن‌ها به عنوان بالقوه بسیار از مسیرهای، استنشاق و تامس پوستی، متعدد دوره‌ها و روزانه در عرشه بلوغ می‌گردد که از میزان بر روز می‌گردد که از میان
زنده‌شدن زیست‌محیطی عناصر بالوی سمنی در باطله‌های فرآوری معدن سرب و روی آهگران

آن‌هایی که ویژگی‌های باطله‌های فرآوری معدن سرب و روی آهگران را دارند، به صورت زیر کاهش می‌یابد:

<table>
<thead>
<tr>
<th>عنصر بالوی</th>
<th>همه‌پوش</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.0085</td>
</tr>
<tr>
<td>As</td>
<td>-</td>
<td>1.5</td>
<td>15</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>0.0085</td>
<td>0.0085</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cd</td>
<td>-</td>
<td>15.1</td>
<td>6.1</td>
<td>-</td>
<td>47.6</td>
<td>-</td>
<td>-</td>
<td>0.81</td>
<td>0.0085</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Co</td>
<td>-</td>
<td>3.66</td>
<td>3.8</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>42.5</td>
<td>0.0085</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول 6. مقادیر دوز مرجع (R/D) و عامل شیب (SF) عناصر بالوی سمنی مختلف

![نمودار 7. مقادیر شاخص خطر و ضریب خطر برای عناصر مختلف در نمونه‌های باطله‌های فرآوری معدن آهگران](image)

Fig. 7. The values of Hazard Quotient (HQ) and Hazard Index (HI) for different elements in the tailing samples of the Ahangaran Mine

DOI: 10.22067/ECONG.2024.85154.1094
آنتسین، کادمیم، نیکل و ترکیب‌های این عناصر و همچنین کروم ۶ در گروه ۱A ترکیب‌های سرطانزا و ترکیب‌های غیرآلی سرب را در گروه ۲A ترکیب‌های سرطانزا قرار داده است. بنابراین در این پژوهش، خطر سرطانزا عناصر آنتسینک، کادمیم، نیکل، کروم و سرب با استفاده از معادله ۹ می‌باشد:

\[CR = ADD \times SF \]

در این رابطه، \(SF \) عامل سیره انیمی (جدول ۶) است. \(CR \) در این رابطه، SF شبیه عامل سرطانزا (جدول ۶) است. \(CR \) محاسبه شد:

\[CR = 10^{-6} \times 1 \times 10^{-4} \times 10^{-6} \]

به‌طور کلی، در این پژوهش، توجه به خطر تجمع این عناصر در طولانی مدت ضروری است.

شکل ۸ مقادیر خطر سرطانزا برای عنصر مختلف در نمونه‌های باطله فراوری معدن آهنگران

Fig. 8. The values of Cancer Risk (CR) for different elements in the tailing samples of the Ahangaran Mine

ماده‌های همبسته

در صورتی که تعادل داده‌ها گیم و داده‌ها غیرنرمال (غیر پارامتریک) باشد از ضریب همبستگی اسپیرمن استفاده می‌شود. این ضریب بر اساس رابطه داده‌ها محاسبه می‌شود. در این پژوهش، برای تفسیر آماری روابط عناصر با یکدیگر و تعیین منشأ احتمالی آنتسینک، کادمیم، نیکل، نیکل و سرب با استفاده از معادله ۹ محاسبه شد:

\[CR = ADD \times SF \]

به‌طور کلی، در این پژوهش، توجه به خطر تجمع این عناصر در طولانی مدت ضروری است.

شکل ۸ مقادیر خطر سرطانزا برای عنصر مختلف در نمونه‌های باطله فراوری معدن آهنگران

Fig. 8. The values of Cancer Risk (CR) for different elements in the tailing samples of the Ahangaran Mine
عنصر آنتیموان در ساختار کاتی پیربت یا کالکوپیریت و همسیگنی آنتیموان سرب، منکز، کالک، کادمیم، وانادیم، توریم، گوگرد، اسکاندل، کروم و نقره مشاهده می‌شود. چنین که اشاره شد، این امر ناشی از رفتار زیم شیمیایی مشابه یا مشابه مشترک عنصر سرب و وانادیم در ساختار کاتی پیربت یا آلومینیم-مولیبدن و یا آلومینیم-نیکل می‌باشد. این نشان دهنده حضور احتمالی عنصر محلید نیکل در ساختار کاتی های آلومینوسیلیکاتی (کاتی های رسی) باشد.

جدول 7 ضرایب همبستگی اسپرمان عنصر مرد در بالعدهای فلورزی معدن آنتیموان

<table>
<thead>
<tr>
<th>عنصر</th>
<th>Ag</th>
<th>As</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>Mo</th>
<th>Ni</th>
<th>Pb</th>
<th>S</th>
<th>Sb</th>
<th>Sc</th>
<th>Th</th>
<th>V</th>
<th>Cd</th>
<th>Zn</th>
<th>Mn</th>
<th>Co</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>.29</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>.60-.50</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>.30</td>
<td>.52-.78</td>
<td></td>
<td></td>
<td>-</td>
<td>.40</td>
<td>.35</td>
<td>.47</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>.19</td>
<td>.40-.35</td>
<td>.47</td>
<td></td>
<td></td>
<td>-</td>
<td>.25</td>
<td>.11</td>
<td>.22</td>
<td>.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>.23</td>
<td>.25</td>
<td>.11</td>
<td>.22</td>
<td>.68</td>
<td></td>
<td></td>
<td>-</td>
<td>.01</td>
<td>.13</td>
<td>.29</td>
<td>.22</td>
<td>.23-.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>.63</td>
<td>.16</td>
<td>.08</td>
<td>.03-.69</td>
<td>.40</td>
<td>.46</td>
<td></td>
<td></td>
<td>-</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>.30</td>
<td>.16</td>
<td>.08</td>
<td>.03-.69</td>
<td>.40</td>
<td>.46</td>
<td></td>
<td></td>
<td>-</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>.13</td>
<td>.66-.30</td>
<td>.46</td>
<td>.78</td>
<td>.79-.48-.42-.63</td>
<td></td>
<td></td>
<td>-</td>
<td>.12</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>.14-.05</td>
<td>.70</td>
<td>.28-.27</td>
<td>.55</td>
<td>.28</td>
<td>.06</td>
<td>.21-.28</td>
<td></td>
<td></td>
<td>-</td>
<td>.12</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
</tr>
<tr>
<td>Th</td>
<td>.11-.32</td>
<td>.46</td>
<td>.68</td>
<td>.78-.55-.18-.55-.95-.67-.07</td>
<td></td>
<td></td>
<td>-</td>
<td>.12</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>.00-.17</td>
<td>.32-.48</td>
<td>.80-.76</td>
<td>.54</td>
<td>.69</td>
<td>.79-.72-.14-.84</td>
<td></td>
<td></td>
<td>-</td>
<td>.12</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>.33-.46</td>
<td>.68-.39-.22</td>
<td>.45</td>
<td>.61</td>
<td>.10-.25-.04-.45-.32-.04</td>
<td></td>
<td></td>
<td>-</td>
<td>.12</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>.20-.56</td>
<td>.86-.60-.33</td>
<td>.30-.46</td>
<td>.16-.35-.22-.55-.42-.16-.93</td>
<td></td>
<td></td>
<td>-</td>
<td>.12</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>.09-.32-.13-.12-.77-.95-.56-.47-.55-.80-.61-.49-.68-.34-.23</td>
<td></td>
<td></td>
<td>-</td>
<td>.12</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>.01-.23-.07-.23-.77-.95-.56-.53-.65-.76-.50-.62-.76-.33-.22-.95</td>
<td></td>
<td></td>
<td>-</td>
<td>.12</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>.37-.09-.13 .1-.76-.65-.41-.76-.46-.56-.43-.50-.62-.1-.06-.77-.77</td>
<td></td>
<td></td>
<td>-</td>
<td>.12</td>
<td>.04</td>
<td>.37</td>
<td>.41</td>
<td>.71-.79</td>
<td>.60</td>
<td>.09</td>
<td>.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P < 0.05
** P < 0.01
آنالیز خوشه‌ای
آنالیز خوشه‌ای یکی از روش‌های آماری چند متغیره است که در آن متغیرهای بر اساس فاصله تنشابی در یک خوشه قرار می‌گیرند (Anazawa et al., 2004; Nguyen et al., 2005) پژوهش، از روش خوشه‌بندی سلسه‌مراتبی وارد استفاده شد. روش وارد، به‌تدریج روشهای جایگزین داده‌ها به حساب می‌آید. چرا که در آن تابع مربع خطاهای نزدیک‌تر را به جای آن‌ها در نمودار نشان می‌دهد. در شکل 9 نتایج حاصل از تحلیل خوشه‌ای عناصر بالووه سیمه در نمونه‌های باهله فراوری معیدن آهنگران نشان داده شده است.

شکل 9. آنالیز خوشه‌ای عناصر موجود در نمونه‌های باهله فراوری معیدن آهنگران

Fig. 9. The cluster analysis of the studied elements in tailing samples of the Ahangaran Mine
مسیر بلغ و کادمیم برای هر دو گروه سنی از مسیر بلغ با خطر سرطان زایی همه‌را است. با توجه به وجود مراکز سبوئی متعدد به ویژه در پایین‌دست باد غالب و همچنین فعالیت گسترده کشاورزی در پرآمون معدن اعمال اقدامات مبینی و زیست‌محیطی برای دفع مناسب باطله‌ها در محدوده مورد بررسی ضروری است.

قدرهای نویسندگان مقاله مرتبط به معنای محرک پژوهشی دانشگاه صنعتی شهید رجایی به سبب فراهم آوردن اطلاعات انجام این پژوهش ابراز می‌نمایند. همچنین از هزینه تحریک محرک نشریه زمین شناسی اقتصادی و داوران گرامی برای بررسی مقاله قدرهایی می‌شود.

تعارض منافع

هیچ گونه تعارض منافعی توسط نویسندگان بیان نشده است.

1. Relative Standard Deviation, RSD
2. Relative Percent Difference, RPD
3. Cation Exchange Capacity, CEC
4. X-Ray Diffraction, XRD
5. Soil Science Society of America, SSSA
6. United States Department of Agriculture, USDA
7. Geoaccumulation index, Igeo
8. Enrichment Factor, EF
9. Potential Ecological Risk Index, PERI
10. Ecological Risk Index
11. Biological Toxicity Factor
12. Average Daily Dose, ADD
13. Hazard Quotient, HQ
14. Hazard Index, HI
15. International Agency for Research on Cancer, IARC
16. Spearman correlation coefficients
17. Cluster Analysis, CA
18. Ward method linkage amalgamation

DOI: 10.22067/ECONG.2024.85154.1094
References
Ge, Y., Murray, P. and Hendershot, W.H., 2000. Trace metal speciation and bioavailability in

Ghanbari Mohazzab et al. Environmental geochemistry of potentially toxic elements in tailing of the Ahangaran Pb-Zn mine …

Uugwanga, M.N. and Kgabi, N.A., 2020. Assessment of metals pollution in sediments and tailings of Klein Auband Oamites mine sites,

