زمین شیمی عناصر کمیاب در میزبان گالن های موجود در ذخایر فلوئوریت البرز مرکزی، استان مازندران

نوع مقاله : علمی- پژوهشی

نویسندگان

دانشگاه گلستان

چکیده

در سلسله جبال البرز در استان مازندران، رخدادهای متعددی از کانسارهای فلوئوریت با سنگ میزبان کربناته حضور دارند که دارای مقادیر فراوانی از گالن و مقادیر ناچیزی از اسفالریت هستند. دستیابی به توانایی معدنی کانسارهای فلوئوریت از کانی­ سازی عناصر کمیاب و کاربردهای ژنزی از اهداف این پژوهش است. بدین‌منظور، تعداد 26 نمونه خالص گالن از نسل­ های مختلف زایشی (رگه-رگچه ­ای و افشان دانه درشت تا دانه ­ریز) در کانسارهای فلوئوریت کمرپشت، پاچی-میانا و اراء پس از آماده ­سازی، توسط فناوری ICP-MS برای عناصر Sb، As، Ag، Hg، Bi، Cd، Tl، Ga، Se به همراه Cu وZn تجزیه‌شدند. داده های به‌دست آمده، نشان‌داد که گالن به‌طور نسبی از Sb (حداکثر تاppm 2581 با میانگین حدود ppm620) و Ag (حداکثر تا ppm70 با میانگینppm30) غنی و از دیگر عناصر فقیر هستند و گوناگونی غلظت عناصر کمیاب در گالن­ های افشان و رگه-رگچه­ ای روند معناداری نشان نمی­ دهد. روابط بین عنصری در گالن همبستگی قوی (r≥65/0) بین Sb–Ag و همبستگی متوسط (6/0><r4/0) بین Ag–As، Ag–Cu و Hg–Zn را نشان‌داد. غلظت بالای Sb و Ag در گالن می ­تواند مرتبط با حضور کانی­ های خاص از این عناصر (مانند تتراهیدریت، استفانیت، دیافوریت و تووینیت) به‌صورت ادخال در گالن میزبان باشد؛ در‌حالی­ که بروز غلظت­ های نه چندان زیاد از عناصر Cd و Hg و ارتباط معنادار آنها با غلظت Zn در گالن (5/0><r2/0) می ­تواند مربوط به حضور ادخال­ های اسفالریت و پولهموزیت و همچنین جایگزینی ساده هم­بار الکتریکی بین Cd2+ و Pb2+ در گالن بوده باشد. با توجه به حضور فراوان گالن (ده ­ها هزار تن) در معادن فلوئوریت مورد بررسی و غلظت نسبتاً بالای Sb و Ag در ساختمان آنها، ارزیابی اقتصادی بازیابی این عناصر از گالن در مقیاس آزمایشگاهی پیشنهاد می ­شود. ارزیابی غلظت عناصر کمیاب در گالن­ نشان‌داد که کانسارهای مورد بررسی شباهت بیشتری به کانسارهای نوع دره می‌سی ­سی ­پی غنی از فلوئوریت نسبت به دیگر کانسارهای فلوئوریت با سنگ میزبان کربناته نشان می ­دهند.
 

کلیدواژه‌ها


Ahrens, L., 1953. The use of ionization potentials. II. Anion affinity and geochemistry. Geochimica et Cosmochimica Acta, 4(1): 1–29.
Alirezaee, S., 1989. Contribution to stratigraphy and mode of generation of F-Pb-Ba deposits in Triassic of eastern Alborz. M.Sc. Thesis, Tehran University, Tehran, Iran, 87 pp. (in Persian with English abstract)
Bethke, P.M. and Barton, P.B., 1971. Distribution of some minor elements between coexisting sulfide minerals. Economic Geology, 66(1): 140–163.
Blackburn, W.H. and Schwendeman, J.F., 1977. Trace element substitution in galena. The Canadian Mineralogist, 15(2): 365–377.
Chutas, N.I., Kress, V.C., Ghiorso, M.S. and Sack, R.O., 2008. A solution model for high-temperature PbS-AgSbS2-AgBiS2 galena. The American Mineralogist, 93(8):1630–1640.
Cook, N.J., Ciobanu, C.L., Wagner, T. and Stanley, C.J., 2007. Minerals of the system Bi-Te-Se-S related to the tetradymite archetype: Review of classification and compositional variation. The Canadian Mineralogist, 45(3): 665–708.
Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M. and Danyushevsky, L., 2009. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 4(1): 1–29.
Czamanske, G.K. and Hall, W.E., 1975. The Ag-Bi-Pb-Sb-S-Se-Te mineralogy of the Darwin lead-silver-zinc deposit, southern California. Economic Geology, 70(6): 1092–1110.
Fernandez, P.F.J. and Izard, M.A., 2005. Trace element content in galena and sphalerite from ore deposits of the Alcudia Valley mineral field (Eastern Sierra Morena, Spain). Journal of Geochemical Exploration, 86(1): 1–25.
Foord, E.E. and Shawe, D.R., 1989. The Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts; a review and some new data from Colorado, California and Pennsylvania. The Canadian Mineralogist, 27(2): 363–382.
Foord, E.E., Shawe, D.R. and Conklin, N.M., 1988. Coexisting galena, PbSss and sulfosalts: evidence for multiple episodes of mineralization in the Round Moun‌tain and Manhattan gold districts, Nevada. The Canadian Mineralogist, 26(2): 355–376.
George, L., Cook, N.J., Ciobanu, K.L. and Wade, B.P., 2015. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. American Mineralogist, 100(3): 548–569.
Goh, S.W., Buckley, A.N., Lamb, R.N., Rosenberg, R.A. and Moran, D., 2006. The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochimica et Cosmochimica Acta, 70(10): 2210–2228.
Gorjizad, H., 1996. Study on geology, mineralogy, facies analysis and genesis of Pachi Miana fluorite deposit. M.Sc. Thesis, Tarbiat Modaress University, Tehran, Iran, 156 pp. (in Persian with English abstract)
Hagni, R., 1996. Mineralogy and significance of bornit ores in the Viburnum trend, southeast Missori Lead district. In: D.F. Sangster (Editor), Carbonate-hosted Lead-Zinc deposits. Special Publication No. 4, Society of Economic Geology, USA, pp. 611–630.
Hall, W.E. and Heyl, A., 1968. Distribution of minor elements in ore and host rock, Illinois-Kentucky fluorite district and upper Mississippi Valley Zinc-Lead district. Economic Geology, 63(4): 655–670.
Jazi, M. and Shahabpour, J., 2010. Mineralogical, fabric, texture and geochemical characteristics of Nakhlak lead mine. Journal of Economic Geology, 2(2): 131–151. (in Persian with English abstract)
Krismer, M., Vavtar, F., Tropper, P., Sartory, B. and Kaindl, R., 2011.Mineralogy, mineral chemistry and petrology of the Ag-bearing Cu-Fe-Pb-Zn sulfide mineralizations of the Pfunderer Berg (South Tyrol, Italy). Austrian Journal of Earth Sciences, 104(1): 36–48.
Levinson, A.A., 1980. Introduction to Exploration Geochemistry. Applied Publishing, United States, 924 pp.
Lockington, J.A., Cook, N.J. and Ciobanu, C.L., 2014. Trace and minor elements in sphalerite from metamorphosed sulphide deposits Julian A. Mineralogy and Petrology, 108(6): 873–890.
Loftus-Hills, G. and Solomon, M., 1967.Cobalt, nikel and selenium in sulphides as indicators of genesis. Mineralium Deposita, 2(2): 228–242.
Lueth, V.W., Megaw, P.K.M., Pingitore, N.E. and Goodell, P.C., 2000. Systematic variation in galena solid-solution compositions at Santa Eulalia, Chihuahua, Mexico. Economic Geology, 95(8): 1673–1687.
Malakhov, A.A., 1968. Bismuth and antimony in galenas as indicatirs of some conditions of ore formation. Geochemistry International, 7(9): 1055–1068.
Marshal, R.R. and Joensuu, O., 1961. Crystal habit and trace element content of some galena. Economic Geology, 56(6): 758–771.
Mehraban, Z., Shafiei, B. and Shamanian, G.H., 2016. REEs geochemistry in fluorite deposits of Elika Formation (East of Mazandaran Province). Journal of Economic Geology, 8(1): 201–221. (in Persian with English abstract)
Monteiro, L.V.S., Bettencourt, J.S., Juliani, C. and de Oliveira, T.F., 2006. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrosia and Fagundes sulfide-rich carbonate-hosted Zn–(Pb) deposits, Minas Gerais, Brazil. Ore Geology Reviews, 28(2): 201–234.
Movahednia, M., Rastad, A. and Rajabi, A., 2013. Investigation of the Geochemical Properties of Subsurface and Rare Substances of Sphalerite and Galena Minerals in Zinc and Lead Abub Bagh deposite, South of Shahrereza, Sanandaj Sirjan Zone. 18th Symposium of Iranian Geological Society, Tarbiat Modarres University, Tehran, Iran.
Nabavi, M.H., 1987. Geological Map of Semnan scale 1:100000. Geological Survey of Iran.
Nabiloo, F., Shafiei, B. and Amini, A. 2017. Diagenetic and post-diagenetic fabrics in Kamarposht fluorite mine (east of Mazandaran province): Explaining and genetic interpretation. Journal of Economic Geology, 9(2): 483 – 507. (in Persian with English abstract)
Pring, A. and Williams, T.B., 1994.A HRTEM study of defects in silver-doped galena. Mineralogical Magazine, 58(3): 455–459.
Qian, Z.H., 1987. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits. Chinese Journal of Geochemistry, 6(2): 177–190.
Rajabi, A., Rastad, E. and Cannet, C., 2013. Metallogeny of Permian-Triassic carbonate hosted Zn-Pb and F deposits of Iran: A review for future mineral exploration. Australian Journal of Earth Sciences, 60(2): 197–216.
Rastad, E. and Shariatmadar, A., 2001. Sheshroodbar fluorite deposits, sedimentary and diagenetic fabrics and its depositional environment (Savad Kuh, Mazandaran province). Scientific Quarterly Journal, GEOSCIENCES, 10(41–42): 20–38. (in Persian with English abstract)
Renock, D. and Becker, U., 2011. A first principles study of coupled substitution in galena. Ore Geology Reviews, 42(1): 71–83.
Saeidi, A. and Akbarpour, M.R., 1992. Geological Map of Pol-E-Sefid scale 1:100000. Geological Survey of Iran.
Sefidian, S., 2014. Geology and mineralogy of Era fluorite mine, southeast of Kiasar, Mazandaran province. M.Sc. Thesis, Golestan University, Gorgan, Iran, 72 pp. (in Persian with English abstract)
Shariatmadar, A., 1999. Geology and genesis of Sheshrodbar fluorite deposit. M.Sc. Thesis, Tarbiat Modaress University, Tehran, Iran, 230 pp. (in Persian with English abstract)
Sharp, T.G. and Buseck, P.R., 1993. The distribution of Ag and Sb in galena: Inclusions versus solid solution. American Mineralogist, 78(1): 85–90.
Siivola, J. and Schmid, R., 2007. List of Mineral Abbreviations; Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Available at: www.bgs.ac.uk/scmr/home.html
Song, X., 1984. Minor elements and ore genesis of the Fankou lead-zinc deposit, China. Mineralium Deposita, 19(1): 95–104.
Song, X. and Tan, H., 1996. Geochemical characteristics of the Fankou Pb-Zn deposits, Northern Guangdong, South China. In: D.F. Sangster (Editor), Carbonate-hosted Lead-Zinc deposits. Special Publication No. 4, Society of Economic Geology, USA, pp. 350–355.
Tauson, V.L., Parkhomenko, I.Y., Babkin, D.N., Men’shikov, V.I. and Lustenberg, E.E., 2005. Cadmium and mercury uptake by galena crystals under hydrothermal growth: A spectroscopic and element thermo-release atomic absorption study. European Journal of Mineralogy, 17(4): 599–610.
Vahabzadeh, G., Khakzad, A., Rasa, I.‌ and Mosavi, M.R., 2009. Study on S isotopes in galena and barite of Savad Kuh fluorite deposits. Journal of Science (Islamic Azad University), 69(18): 99–108. (in Persian with English abstract)
Vahabzadeh, G., Khakzad, A., Rasa, I.‌ and Mosavi, M.R., 2014. Fluorite REEs geochemistry in fluorite deposits of central Alborz. New Findings in Applied Geology, 16(1): 58–70. (in Persian with English abstract)
Vahdati Daneshmand, F., 2003. Geological Map of Pol-E-Sefid scale 1:100000. Geological Survey of Iran.
Vahdati Daneshmand, F. and Saeidi, A., 1991.Geological Map of Sari scale 1:250000. Geological Survey of Iran.
Wilkinson, J.J. and Eyre, S.L., 2005. Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen Mine. Economic Geology, 100(1): 63–86.
Ye, L., Cook, N.J., Ciobanu, C.L., Liu, Y.P., Zhang, Q., Liu, T.G., Gao, W., Yang, Y.L. and Danyushevskiy, L., 2011. Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICP-MS study. Ore Geology Reviews, 39(2): 188–217.
Zabihitabar, Sh. and Shafiei, B., 2014. Mineralogy and mode occurrence of sulfides, sulfates and carbonates at fluorite mines in East of Mazandaran Province. Quarterly Iranian Journal of Geology, 33(1): 62–78. (in Persian with English abstract)
Zabihitabar, Sh., Shafiei, B. and Mirnejad, H., 2015. Sulfur source tracing of sulfide and sulfate minerals in fluorite deposits of Elika Formation (East of Mazandaran Province): Implications of sulfur isotope. Quarterly Iranian Journal of Geology, 35 (3): 75–92. (in Persian with English abstract)
CAPTCHA Image