Comparison of geochemistry and porphyry copper mineralization efficiency in granitoids of the Sanandaj-Sirjan and Urumieh-Dokhtar zones; using rare earth elements geochemistry

Document Type : Research Article

Authors

Shahid Chamran University of Ahvaz

Abstract

Introduction
The formation of the Zagros orogenic belt is attributed to northeastward oblique subduction of the Neotethys beneath the western border of central Iran. This was followed by continental collision between the Afro-Arabian plate and the central Iran microcontinet (Zarasvandi et al., 2015). The Zagros orogen is characterized by three main parallel structural zones consisting of Zagros fold and thrust belt, the Sanandaj–Sirjan metamorphic zone, and the Urumieh–Dokhtar magmatic arc (Mohajjel et al., 2003). The Urumieh–Dokhtar magmatic arc is dominated by the widespread occurrence of Eocene to Quaternary intrusive and extrusive rocks. It is considered as being one of the main Cu bearing regions in the world, where world class giant porphyry deposits, as well as large and small sub-economic porphyry Cu ± Mo ± Au systems have been reported and investigated by many authors (Shafiei et al., 2009; Zarasvandi et al., 2005). In addition to UDMA, the Sanandaj-Sirjan zone (SSZ) hosts several Jurassic-Cretaceous intrusive complexes extending from the northwest to southeast SSZ. It should be noted that these granitoids are barren and porphyry mineralization has not been accompanied with these intrusions. This paper tried to compare the available geochemical data of productive granitoids in the Urumieh-Dokhtar (i.e., Dalli, Ali-Abad and Darreh-Zerreshk, Parkam, Sarcheshmeh, Meiduk and Sungun), and those of barren intrusions in the Sanandaj-Sirjan zone (i.e., Aligodarz, Bourujerd, Alvand, Astaneh, Hasan Robat, and Siah Koh).
 
Materials and methods
This investigation is based on the available geochemical data on the six barren intrusions in the SSZ (i.e., Aligodarz, Bourujerd, Alvand, Astaneh, Hasan Robat and Siah Kohe), and productive intrusive rocks (porphyry associated intrusions) in the UDMA (i.e., Dalli, Ali-Abad and Darreh-Zerreshk, Parkam, Sarcheshmeh, Meiduk and Sungun). Data for the UDMA porphyry intrusions (41 samples) were adopted from studies of Daneshjou (2014), Zarasvandi et al. (2005), Taghipour and Mohammadi Laghab (2014), Barzegar (2007), Taghipour (2007), and Hezarkhani (2006). Furthermore, the data of the SSZ barren intrusions (42 samples) comes from Esna Ashari et al. (2012), Khalaji et al. (2007),  Aliani et al. (2012), Tahmasbi et al. (2010), Alirezaei and Hassanzadeh (2001), and Arvin et al. (2007). Two criteria were used for selection of 83 representative samples: (1) samples with a relatively similar mineralogical and compositional range (quartz diorite, quartz monzonite, granodiorite and granite), and (2) samples with the least amount of alteration (minimal amounts of Loss On Ignition; LOI wt.% = H2O + CO2).
 
Results
Productive intrusions in UDMA have positive Eu anomalies, LREE enrichment relative to HREE, and high Lan/Ybn ،Sr/Y، Dyn/Ybn، Lan/Smn ratios. In comparison, barren granitoids in the SSZ are characterized by steep downward LREE to HREE, negative Eu anomalies and low Lan/Ybn ، Sr/Y، Dyn/Ybn، Lan/Smn ratios.
 
Discussion
Based on the presented results, it is proved that due to the lack of considerable crustal thickness in SSZ (during the subduction of the Neotethyan oceanic lithosphere under the SSZ zone), and the presence of dry magma (low H2O contents), the SSZ granitoids exhibit barren characteristics. In contrast, during the ongoing processes of closure of Neo-Tethys and during compression and crustal shortening, magma mixing and evolution toward high magmatic water content lead to the increasing of metal endowment in the porphyry associated granitoids of (UDMA) It seems that magma generation from the melting of thickened lower crust (garnet amphibolite source) could be considered as one important key factors for the generation of metal-rich magmas with high oxidation state and high H2O contents has led to the development of porphyry Cu systems in the UDMA compared to those of SSZ granitoids.
 
Acknowledgements
The authors are grateful to the Shahid Chamran University of Ahvaz for the research funding by the Grant Commission in 2017.
 
References
Aliani, F., Maanijou, M., Sabouri, Z. and Sepahi, A.A., 2012. Petrology, geochemistry and geotectonic environment of the Alvand Intrusive Complex, Hamedan, Iran. Chemie der Erde-Geochemistry, 72(4): 363–383.
Alirezaei, S. and Hassanzadeh, J., 2012. Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: A new record of the Gondwana break-up in Iran. Lithos, 15(151): 122–134.
Arvin, M., Pan, Y.M., Dargahi, S., Malekizadeh, A. and Babaei, A., 2007. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of neotethys subduction. Journal of Asian Earth Sciences, 30(3): 474–489.
Barzegar, H., 2007. Geology, petrology and geochemical characteristics of alteration zones within the Seridune prospect, Kerman, Iran. Ph.‌D. thesis, Aachen University, Aachen, Germany, 320 pp.
Daneshjou, M., 2014. Investigation of geology, geochemistry and genetic model of the Dalli porphyry Cu–Au deposit, Delijan, Markazi province. M.Sc. Thesis, Shahid Chamran University, Ahvaz, Iran, 150 pp. (in Persian with English abstract)
Esna-Ashari, A., Tiepolo, M., Valizadeh, M.V., Hassanzadeh, J. and Sepahi, A.A., 2012. Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan zone, Iran. Journal of Asian Earth Sciences, 43(1): 11–22.
Hezarkhani, A., 2006. Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran. Journal of Asian Earth Sciences, 27(3): 326–340.
Khalaji, A.A., Esmaeily, D., Valizadeh, M.V. and Rahimpour-Bonab, H., 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 29(5): 859–877.
Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4): 397–412.
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3): 265–283.
Taghipour, N., 2007. The application of fluid inclusions and isotope geochemistry as guides for exploration, alteration and mineralization at the Meiduk porphyry copper deposit, Shahr-Babak, Kerman. Unpublished Ph.D. thesis, Shahid Bahonar University, Kerman, Iran, 321 pp.
Taghipour, N. and Mohammadi Laghab, H., 2014. Sara (Parkam) Porphyry Copper Deposit in Kerman, Iran: Petrography, Geochemistry and Geodynamic Setting. Geochemistry Journal, 1(3): 14–26.
Tahmasbi, Z., Castro, A., Khalili, M., Khalaji, A.A. and de la Rosa, J., 2010. Petrologic and geochemical constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran. Journal of Asian Earth Sciences, 39(3): 81–96.
Zarasvandi, A., Liaghat, S. and Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, central Iran. International Geology Review, 47(6): 620–646.
 

Keywords


Aghazadeh, M., 2015. Petrogenesis and U-Pb age dating of intrusive bodies in the Sar Cheshmeh deposit. Scientific Quarterly Journal, Geosciences, 25(97): 291–312. (in Persian with English abstract)
Ahmadian, J., Haschke, M., McDonald, I., Regelous, M., RezaGhorbani, M., Emami, M.H. and Murata, M., 2009. High magmatic flux during Alpine-Himalayan collision: Constraints from the Kal-e-Kafi complex, central Iran. Geological Society of America Bulletin, 121(5–6): 57–868.
Alavi, M., 1980. Tectonostratigraphic evolution of the Zagrosides of Iran. Geology, 8(3): 144–149.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3–4): 211–238.
Aliani, F., Maanijou, M., Sabouri, Z. and Sepahi, A.A., 2012. Petrology, geochemistry and geotectonic environment of the Alvand Intrusive Complex, Hamedan, Iran. Chemie der Erde-Geochemistry, 72(4): 363–383.
Alirezaei, S. and Hassanzadeh, J., 2012. Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: A new record of the Gondwana break-up in Iran. Lithos, 15(151): 122–134.
Arvin, M., Pan, Y.M., Dargahi, S., Malekizadeh, A. and Babaei, A., 2007. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of neotethys subduction. Journal of Asian Earth Sciences, 30(3): 474–489.
Asadi, S., Moore, F. and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Science Reviews, 30(138): 25–46.
Asadi, S., Moore, F., Zarasvandi, A. and Khosrojerdi, M., 2013. First report on the occurrence of CO2-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralisation processes in a continental collision setting. Geologos, 19(4): 301–320.
Ayati, F., Yavuz, F., Asadi, H.H., Richards, J.P. and Jourdan, F., 2013. Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran. International Geology Review, 55(2): 158–184.
Baldwin, J.A. and Pearce, J.A., 1982. Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes. Economic Geology, 77(3): 664–674.
Barzegar, H., 2007. Geology, petrology and geochemical characteristics of alteration zones within the Seridune prospect, Kerman, Iran. Ph.D. thesis, Aachen University, Aachen, Germany, 320 pp.
Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265.
Berberian, F., Muir, I.D., Pankhurst, R.J. and Berberian, M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139(5): 605–614.
Bissig, T., Clark, A.H., Lee, J.K. and von Quadt, A., 2003. Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au–Ag–Cu belt, Chile/Argentina. Mineralium Deposita, 38(7): 844–862.
Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 21(7): 767–780.
Castillo, P.R., 2012. Adakite petrogenesis. Lithos, 134: 304–316.
Chappell, B.W. and White, A.J.R., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489–499.
Daneshjou, M., 2014. Investigation of geology, geochemistry and genetic model of the Dalli porphyry Cu–Au deposit, Delijan, Markazi province. M.Sc. Thesis, Shahid Chamran University, Ahvaz, Iran, 150 pp. (in Persian with English abstract)
Davoudzadeh, M. and Schmidt, K., 1984. A review of the Mesozoic paleogeography and paleotectonic evolution of Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 168(2–3): 182–207.
Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662–665.
Drummond, M.S., Defant, M.J. and Kepezhinskas, P.K., 1996. Petrogenesis of slab-derived trondhjemite–tonalite-dacite/adakite magmas. Geological Society of America Special Papers, 315: 205–215.
Dufek, J. and Bergantz, G.W., 2005. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. Journal of Petrology, 46(11): 2167–2195.
Esna-Ashari, A., Tiepolo, M., Valizadeh, M.V., Hassanzadeh, J. and Sepahi, A.A., 2012. Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan zone, Iran. Journal of Asian Earth Sciences, 43(1): 11–22.
Fatehi, M. and Asadi Haroni, H., 2019. Geophysical signatures of the gold rich porphyry copper deposits: A case study at the Dalli Cu-Au porphyry deposit. Journal of Economic Geology, 10(2): 639–675. (in Persian with English abstract)
Frey, F.A., Chappell, B.W. and Roy, S.D., 1978. Fractionation of rare-earth elements in the Tuolumne Intrusive Series, Sierra Nevada batholith, California. Geology, 6(4): 239–242.
Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6): 683–693.
Ghazi, J.M. and Moazzen, M., 2015. Geodynamic evolution of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran. Turkish Journal of Earth Sciences, 24(5): 513–528.
Ghorashizadeh, M., 1978. Development of Hypogene and Supergene Alteration and Copper Mineralization Patterns, Sar Cheshmeh Porphyry Copper Deposit, Iran. M.Sc. thesis, Brock University, Canada.
Green, T.H. and Pearson, N.J., 1985. Experimental determination of REE partition coefficients between amphibole and basaltic to andesitic liquids at high pressure. Geochimica et Cosmochimica Acta, 49(6): 1465–1468.
Hassanzadeh, J., 1993, Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of c entral Iran (Shahr e Babak area, Kerman Province). Ph.D. thesis, University of California, Los Angeles, Henderson, 420 pp.
Hezarkhani, A., 2006. Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran. Journal of Asian Earth Sciences, 27(3): 326–340.
Hezarkhani, A. and Williams-Jones, A.E., 1998. Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran; evidence from fluid inclusions and stable isotopes. Economic Geology, 93(5): 651–670.
Jazi, M.A., Karimpour, M.H. and Malekzadeh Shafaroudi, A., 2013. Overview of the geochemistry and Rb/Sr, Sm/Nd isotopes of Middle Jurassic and Tertiary granitoid intrusions: a new insight on tectono-magmatism and mineralization of this period in Iran. Journal of Economic Geology, 2(4): 171–198. (in Persian)
Kay, R.W., 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1–2): 117–132.
Kay, S.M. and Mpodozis, C., 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA today, Geological Society of Amreica, 11: 4–9.
Khalaji, A.A., Esmaeily, D., Valizadeh, M.V. and Rahimpour-Bonab, H., 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 29(5): 859–877.
Kirkham, R.V. and Dunne, K.P., 2000. World distribution of porphyry, porphyry-associated skarn, and bulk-tonnage epithermal deposits and occurrences. Geological Survey of Canada, Open File 3792, http://geochem.nrcan.gc.ca/cdogs/content/pub/pub10339_e.htm
Klepeis, K.A., Clarke, G.L. and Rushmer, T., 2003. Magma transport and coupling between deformation and magmatism in the continental lithosphere. Geological Survey of Canada, 13(1): 4– 11.
Lang, J.R. and Titley, S.R., 1998. Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits. Economic Geology, 93(2): 138–170.
Mackenzie, W.S., Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979. The interpretation of igneous rocks. Mineralogical Magazine, 44(333): 115–116.
Macpherson, C.G., Dreher, S.T. and Thirlwall, M.F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3): 581–593.
McInnes, B.I., Evans, N.J., Fu, F.Q. and Garwin, S., 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and geochemistry, 58(1): 467–498.
Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4): 397–412.
Mohammadi Laghab, H., Taghipour, N. and Iranmanesh, M.R., 2012. Distribution pattern of Cu, Mo, Pb, Zn and Fe elements in Sara (Parkam) porphyry copper deposit, Shahr-Babak, Kerman province. Iran. Quarterly Iranian Journal of Geology, 5(20): 17–27. (in Persian with English abstract)
Pourkaseb, H., Zarasvandi, A., Saed, M. and Davoudian Dehkordy, A., 2017. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry. Journal of Economic Geology, 9(1): 73–92. (in Persian with English abstract)
Rapp, R.P. and Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891–931.
Richards, J.P., 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: just add water. Economic Geology, 106(7): 1075–1081.
Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70(45): 323–345.
Richards, J.P., Boyce, A.J. and Pringle, M.S., 2001. Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96(2): 271–305.
Richards, J.P. and Kerrich, R., 2007. Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic geology, 102(4): 537–576.
Richards, J.P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107(2): 295–332.
Sajona, F.G. and Maury, R.C., 1998. Association of adakites with gold and copper mineralization in the Philippines. Comptes Rendus de l'Academie des Sciences-Series IIA- Earth and Planetary Science, 326(1): 27–34.
Shafiei, B., 2010. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic-metallogenetic implications. Ore Geology Reviews, 38(1): 27–36.
Shafiei, B., 2012. Discrimination between productive and non-productive granitoid intrusions in Kerman porphyry copper belt: Results of preliminary petrographic studies. Journa of Advanced Applied Geology, 2(1): 1–7. (in Persian with English abstract)
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3): 265–283.
Shafiei, B. and Shahabpour, J., 2008. Gold distribution in porphyry copper deposits of Kerman region, Southeastern Iran. Journal of Sciences, Islamic Republic of Iran, 19(3): 247–260. (in Persian with English abstract)
Shafiei, B., Shahabpour, J. and Haschke, M., 2008. Transition from Paleogene normal calc-alkaline to Neogene adakitic-like plutonism and Cu-metallogeny in the Kerman porphyry copper belt: response to Neogene crustal thickening. Journal of Sciences, Islamic Republic of Iran, 19(1): 67–84. (in Persian with English abstract)
Shahabpour, J. and Kramers, J.D., 1987. Lead isotope data from the Sar-Cheshmeh porphyry copper deposit, Iran. Mineralium Deposita, 22(4): 278–281.
Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A.A., Shang, C.K. and Abedini, M.V., 2010. Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): New evidence for Jurassic magmatism. Journal of Asian Earth Sciences, 39(6): 668–683.
Sillitoe, R.H., 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67(2): 184–197.
Simmonds, V., Moazzen, M. and Mathur, R., 2016. Investigation on the age of mineralization in the Sungun porphyry Cu-Mo deposit, NW Iran with a regional metallogenic perspective. In European Geosciences Union General Assembly Conference Abstracts, Vienna universiyy, Vienna, Austria.
Sun, W., Zhang, H., Ling, M.X., Ding, X., Chung, S.L., Zhou, J., Yang, X.Y. and Fan, W., 2011. The genetic association of adakites and Cu–Au ore deposits. International Geology Review, 53(5–6): 691–703.
Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1): 29–44.
Taghipour, N., 2007. The application of fluid inclusions and isotope geochemistry as guides for exploration, alteration and mineralization at the Meiduk porphyry copper deposit, Shahr-Babak, Kerman. Unpublished Ph.D. thesis, Shahid Bahonar University, Kerman, Iran, 321 pp.
Taghipour, N. and Mohammadi Laghab, H., 2014. Sara (Parkam) Porphyry Copper Deposit in Kerman, Iran: Petrography, Geochemistry and Geodynamic Setting. Geochemistry Journal, 1(3): 14–26.
Tahmasbi, Z., Castro, A., Khalili, M., Khalaji, A.A. and de la Rosa, J., 2010. Petrologic and geochemical constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran. Journal of Asian Earth Sciences, 39(3): 81–96.
Takin, M., 1972. Iranian geology and continental drift in the Middle East. Nature, 235(5334): 47–150.
Tiepolo, M., Tribuzio, R. and Langone, A., 2011. High-Mg andesite petrogenesis by amphibole crystallization and ultramafic crust assimilation: evidence from Adamello hornblendites (Central Alps, Italy). Journal of Petrology, 52(5): 1011–1045.
Zarasvandi, A., Liaghat, S. and Zentilli, M., 2004. Evolution of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, central Iran, within an orogen-parallel strike-slip system. 30th Annual Meeting of Atlantic Geoscience Society, Moncton, New Brunswick, Canada.
Zarasvandi, A., Liaghat, S. and Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, central Iran. International Geology Review, 47(6): 620–646.
Zarasvandi, A., Liaghat, S., Zentilli, M. and Reynolds, P.H., 2007. 40Ar/39Ar geochronology of alteration and petrogenesis of porphyry copper-related granitoids in the Darreh-Zerreshk and Ali-Abad area, central Iran. Exploration and Mining Geology, 16(1–2): 11–24.
Zarasvandi, A., Rezaei, M., Sadeghi, M., Lentz, D., Adelpour, M. and Pourkaseb, H., 2015. Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA), Iran. Ore Geology Reviews, 70(35): 407–423.
CAPTCHA Image