کانی شناسی، ژئوشیمی و خاستگاه کانسار آهن ظفرآباد کردستان با استفاده از داده های عناصر جزئی و نادر خاکی کانی مگنتیت

نوع مقاله : علمی- پژوهشی

نویسندگان

بوعلی سینا

چکیده

کانسار آهن ظفرآباد در 12 کیلومتری شمال غرب شهر دیواندره و در حاشیه شمالی زون آذرین- دگرگونی سنندج- سیرجان واقع شده است. این ذخیره، عدسی تا صفحه ای شکل بوده و درون یک زون بُرشی و در سنگهای میزبان کالک شیستی و آهکی تشکیل شده است. مگنتیت با بافت توده ای، کاتاکلاستی و جانشینی، کانه اصلی این کانسار است، هر چند پیریت و سایر کانیهای سولفیدی نیز در آن پیدا می شوند. آزمایشهای اندازه گیری عناصر اصلی، جزئی و کمیاب به روشهای ICP-MS و ICP-AES انجام گردید. براساس نسبتهای عناصر جزئی نمونه های کانسنگ مگنتیتی و نمودارهای ((Ni/(Cr+Mn به Ti+V و Ca+Al+Mn به Ti+V) مشخص شد که کانسار ظفرآباد در محدوده کانسارهای اسکارنی قرار می گیرد. نمودارهای عنکبوتی رسم‌شده، یک سیر نزولی و یکنواخت از عناصر LREE به‌سمت عناصر HREE، را همـراه با آنومـالی های منفی از Eu (میانگین 06/0ppm) و Ce (میانگین 94/0ppm ) نشـان می دهد. همچنین مقایسه الگوی توزیع عناصر نادر خاکی مگنتیت های ظفرآباد با انواع مختلف کانسارهای آهن نشان می‌دهد که الگوی عناصر نادر خاکی در ظفرآباد، شباهت بیشتری به کانسارهای نوع اسکـارنی دارد. تحلیل مؤلفه‌های محاسبه‌شده برای REE نشان می‌دهد که سیالات گرمابی مؤثر در کانه زایی، عمدتاً منشأ ماگمایی داشته و طی فرآیندهای تفریق و تبلور توده های آذرین عمقی به‌صورت یک فاز سیال آهن دار تشکیل و تزریق آن درون سنگهای کربناتی، پیدایش اسکارن آهن دار را به دنبال داشته است.

کلیدواژه‌ها


[1] یساقی ع.، نعمتی، م.، کمالی م ر.، "استفاده از ریز ساختار بلورهای کوارتز و کلسیت و شاره های درگیر در تحلیل شرایط دگرشکلی و برآورد خاستگاه سیستم رورانده کو‌‌ه‌زاد زاگرس در منطقه بختیاری"، مجله بلور شناسی و کانی-شناسی ایران، سال هجدهم، شماره‌ 2 (1388) ص 181-194.
[2] Eisbacher G.H., “Deformation mechanisms of mylonitic rocks and fractured ranulites in Cobequid Mountains, Nova Scotia, Canada”, Geo-logical Society of America Bulletin 81(1970) 2009-2020.
[3] Lister G.S., Snoke A.W., “S-C Mylonites”, Journal of Structural Geology 6 (1984) 617-638.
[4] Stipp M., Stunitz H., Heilbronner R., Schmid S.M., “The eastern Tonale fault zone: a natural Laboratory for crystal plastic deformation of quartz over a temperature range from 250° to 700°”. Journul of structural Geology 24 (2002) 1861- 1884.
[5] Means WD., “The concept of steady –state foliation”, Tectonoophysics 78 (1981) 179-199.
[6] Urai J., Means WD., Lister GS., “ Dynamic recrystallization of minerals. In: Heard HC, Hobbs BE (eds) Mineral and rock deformation: laboratory studies, the Paters on volume. Geophysical Monograph”, American Geophysical Union, Washington, D.C 36 (1986) 161-200.
[7] Passchier C.W., Trouw R.A.J., “Microtec-tonics”. Springer Verlag, Berlin, Heidelberg (1996).
[8] Groshong R.H.Jr., Pfiffner O.A., Pringle L.R., “Strain partitioning in the Helvetic thrust belt of eastern Switzerland from the leading edge to the internal zone”, Journal of Structural Geology 6 (1984a) 5–18.
[9] David A.F., Alan P.M., Mark A.E., Martin B., Richard H.G.J., Charles M.O., “Calcite twin morphology: a low-temperature deformation geothermometer”, Journal of Structural Geology 26 (2004) 1521 – 1529.
[10] Weber J.C, Ferrill, D.A., Roden-Tice Mk.,“Calcite and quartz microstructural geothermometry of low-grade metasedimentary rocks, Northen Range, Trinidad", Journal of Structural Geology 23 (2001) 93-112.
[11] Rowe K.J., Rutter E.H., “Paleostress estimation using calcite twinning: experimental calibration and application to nature”. Journal of Structural Geology 12 (1990) 1 – 17.
[12] Groshong R.H.Jr., “Low-temperature deformation mechanisms and their interpretation”, Bulletin of the Geological Society Of America 100 (1988) 1329-1376.
[13] Burkhard M., “Calcite twins, their geometry, appearance and significance as stress strain markers and indicators of tectonic regime: a review”. Journal of Structural Geology 15 (1993) 351 – 368.
[14] Ferrill D.A., “Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone”, Journal of Structural Geology 13 (1991) 667 – 675.
[15] Mucke A., Cabral A. R., “Redox and nonredox reactions of magnetite and hematite in Rocks”, Chemie der Erde 65 (2005) 271-278.
[16] Ohmoto H., “Nonredox transformations of magnetite-hematite in hydrothermal systems”, Economic Geology 98 (2003) 157-161.
[17] Kamei G., Ohmoto H., 2000. “The kinetics of reactions between pyrite and O2-bearing water revealed from in situ measurements of DO, Eh and pH in a closed system”, Geochimica et Cosmochimica Acta 64 (2000) 2585-2601.
[18] Klein C., Hurlbut C., “Manual of mineralogy”, Wiley (1985) 596.
[19] Ramdohr, P., “The Ore Minerals and Their Intergrowths”. Pergamon Press, (1980) 1207.
[20] Monteiro L. V. S., Xavier R. P., Hitzman, M. W., Juliani, C., Filho, C. R. S., Carvalho E. R., “Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajas Mineral Province, Brazil”, Ore Geology Reviews 34 (2008) 317-336.
[21] Meinert L. D., “Mineralogy and petrology of iron skarns in western British Columbia”, Economic Geology 79 (1984) 869-882.
[22] Frietsch R., Pendahl J. A., “Rare earth elements in apatite and magnetite in kiruna-type iron ores and some other Iron types”, Ore Geology Reviews 9 (1995) 489-510.
[23] Boynton W. V., “Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. (ed), Rare earth element geochemistry”. Elsevier (1984) 63- 114.
[24] De Sitter J., Govaret A., De Grave E., Chamaere D., Robrecht G., “ Mossbauer Study of Ca2+- containing magnetites”. Physica Status Solidi 43 (1977) 619-624.
[25] Appel P. W. U., “Rare earth element in the early Archaen Isua iron-formation, west Greenland”, Precambrian Research (1999)
243-258.
[26] Barret T. J., Fralick P. W., Jarvis I., “Rare earth element geochemistry of some Archean iron formations North of Lake Superior, Ontario. Can”. Journal of Earth Science 25 (1988) 570 p.
[27] Fryer B. J., “Rare earth evidence in iron-formations for changing Precambrian oxidation states”, Geochemica et Cosmochimica Acta 41(1977) 361-367.
[28] Loberg B.E.H., Horndahl, A.K., Ferride., “Geochemistry of Swedish Precambrian Iron Ores”, Mineralum Deposita 18 (1983) 487-504.
[29] Dupuis C., Beaudoin G., “Discriminant digrams for iron oxide trace element fingerprinting of mineral deposit types“, Mineralum Deposita 46 (2011) 319–335.
[30] Nystrom J.O., Henriquez F., “Magmatic Features of Iron Ores of the Kiruna Type in Chile and Sweden:Ore Textures and Magnetite Geochemistry”, Economic Geology 89 (1995) 820-839.
[31] Kato Y., “Rare Earth Elements as an Indicator to Origins of skarn deposits: Examples of the kamioka Zn-Pb and Yoshiwara-Sannotake Cu(-Fe) deposits in Japan”, Resource Geology 49 (1999) 183-198.
[32] Niiranen T., Manttari I., Poutiainen M., Oliver N., Miller J.A., “Genesis of Palaeoproterozoic iron skarns in the Misi region, northen Finland”, Mineralium Deposita 40 (2005) 192-217.
[33] Tallarico F. H. B., Figueiredo B. R., Groves D. I., Kositcin N., McNaughton N. H., Fletcher I. R., Rego J. L., “Geology and SHRIMP U-Pb geochronology of the Igarape Bahia deposit, Carajas copper-gold belt, Brazil: An Archean (2.57 Ga) example of iron-oxide Cu-Au-(U-REE) mineralization”, Economic Geology 100 (2005) 7-28.
[34] Oksuz N., Koc S., “Examination of Sarikaya (Yozgat-Turkey) iron mineralization with rare earth element (REE) method”, Journal of Rare Earths 28 (2009) 143 p
CAPTCHA Image