مطالعه کانه‌ زایی کانسار مس جیان، استان فارس، با استفاده از داده‌ های پتروگرافی و ژئوشیمیایی

نوع مقاله : علمی- پژوهشی

نویسندگان

شیراز

چکیده

کانسار مس جیان در لبه شرقی زون دگرگونی سنندج- سیرجان و در فاصله 195 کیلومتری شمال‌شرق شیراز در مجموعه آتشفشانی- رسوبی دگرگون‌شده کمپلکس سوریان با سن پرموتریاس واقع شده است. واحدهای سنگی منطقه اغلب شامل متابازالت، کلریت- مسکویت شیست، کلریت- کوارتز شیست، میکاشیست و گرافیت شیست است. پیریت، مهمترین کانی سولفیدی و کالکوپیریت کانی اصلی مس در این کانسار است که به شکلهای افشان و رگه‌چه‌ای اغلب در سنگهای کلریت- کوارتز شیست و کلریت- مسکویت شیست کانه‌زایی شده‌اند. الگوی توزیع عناصر نادر خاکی در سنگهای آذرین دگرگون‌شده با نسبت 9/2N=(La/Lu)، نشانگر ماگمای بازالت تولئیتی با منشأ گوشته‌ای است. داده‌های شیمیایی بر روی عناصر نامتحرک نظیر Ti و همچنین عناصر با شدت میدان بالا نظیر Zr، Nb و Y در سنگ متابازالت، نشانگر درجه ذوب‌بخشی پایین گوشته برای تشکیل ماگمای با ماهیت E-MORB می‌باشند. دگرسانیهای کلریتی، سیلیسی و به میزان کمتری سریسیتی، عمده دگرسانیهای محدوده کانسار مس جیان می‌باشند. مقادیر 5/32-09/29Y/Ho= در کانسنگ مس جیان، نشانگر حضور گسترده آب دریا در سیال گرمابی کانه‌زاست. داده‌های پتروگرافی و ژئوشیمیایی، نشانگر تشکیل کانسار مس جیان به‌صورت یک کانسار سولفید توده‌ای با سنگ میزبان آتشفشانی- رسوبی است و استفاده از میزان اندیس دگرسانی ایشی‌کاوا (Ishikawa AI) همراه با اندیس کلریت- کربنات- پیریت (CCP) به منظور پی‌جویی کانسارهای سولفید توده‌ای در منطقه مورد مطالعه سودمند می‌باشد.

کلیدواژه‌ها


[1] اویسی ب.، یوسفی ط.، "پی جویی و اکتشاف نیمه‌تفصیلی ذخایر معدنی سرب و باریت (منطقه بوانات استان فارس)"، سازمان زمین‌شناسی کشور (1375).
[2] تقی پور ن.، "زمین‌شناسی و ژنز رخداد مس جیان- استان فارس"، پایان‌نامه کارشناسی ارشد زمین‌شناسی اقتصادی دانشگاه شیراز، (1379) ص161.
[3] موسیوند ف.، "کانی شناسی، ژئوشیمی و ژنز کانه‌زایی مس در مجموعه آتشفشانی- رسوبی سوریان در منطقه بوانات فارس"، پایان‌نامه کارشناسی ارشد زمین‌شناسی اقتصادی، دانشگاه تربیت مدرس تهران، (1382) ص 247.
[4] Sheikholeslami M. R., "Evolution structural etmetamorphique de la marge suddelamicroplaque de l’Iran central: les complexes metamorphiques de la region deNeyriz (Zone de Sanandaj-Sirjan)", These, universite de Brest, Ph.D thesis (2002) 194p.
[5] Alavi M., "Structures of the Zagros Fold-Thrust belt in Iran", American Journal of Science 13 (2007) 1064–1095.
[6] هوشمندزاده ع.، سهیلی م.، حمدی ب،. "نقشه 2500000/1 اقلید"، سازمان زمین‌شناسی کشور (1369).
[7] اویسی ب.، همکاران،. "نقشه 100000/1 سوریان"، سازمان زمین‌شناسی کشور (1380).
[8] Mousivand F., Rastad E., Hoshino K., Watanabe M., "The Bavanat Cu-Zn-Ag orebody: first recognition of a Besshi-type VMS deposit in Iran", Neues Jahrbuch für Mineralogie – Abhandlungen 183 (2007) 297-315.
[9] Hekinian R., Juteau T., Gracia E., Sichler B., Sichel S., Udintsev G., Apprioual R., Ligi M., "Submersible observation of Equatorial Atlantic Mantal: St.Paul fracture Zone region", Mar Geophys Res 21 (2002) 529-660.
[10] Mousivand F., Rastad E., Meffre S., Jan P., Solomon M., Zaw Kh., "U-Pbgeochronology and Pb isotope characteristics of the Chahgaz volcanogenic massive sulphide deposit, southern Iran", International Geology Review 53 (2010) 1-‌24.
[11] Peter J. M., Scott S. D., "Windy Craggy, northwestern British Columbia: the world's largest Besshi deposit", Reviews in Economic Geology 8 (1999) 261-295.
[12] Piercey S. J., Jan M., Peter J. M., Mortensen J. K., Paradis S., Murphy D. C., Tucker T. L., "Petrology and U-Pb Geochronology of Footwall Porphyritic Rhyolites from the Wolverine Volcanogenic Massive Sulfide Deposit, Yukon, Canada: Implications for the Genesis of Massive Sulfide Deposits in Continental Margin Environments", Economic Geology 103 (2008) 5-33.
[13] Cox S. F., Ethridge M. A., Hobbs B. E., "The experimental ductile deformation of polycrystalline and single crystal pyrite", Economic Geology 76 (1981) 2105-2117.
[14] Franklin J. M., Gibson H. L., Jonasson I. R., Galley A. G., "volcanic massive sulfide deposit", Economic Geology 100 (2005) 485-627.
[15] McClay K. R., Ellis P. G., "Deformation of pyrite", Economic Geology 79 (1984) 400-403.
[16] Schardt C., Cooke D. R., Gemmell J. B., Large R. R., "Geochemical modeling of the zoned footwall alteration pipe.Hellyer volcanic-hosted
massive sulfide deposit, western Tasmania, Australia", Economic Geology 96 (2001) 1037-1054.
[17] Ishikawa K., Kanisawa S ., Aoki K., "Content and behavior of fluorine in Japanese Quaternary volcanic rocks and petrogenetic application", Journal of Volcanology and Geothermal Research 8 (1980) 161-175.
[18] Large R. R., Gemmell J. B., Paulic H., Huston D. L., "The alteration box: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposit", Economic Geology 96 (2001) 957-971.
[19] Winchester J. A., Floyd P. A., "Geochemical discrimination of different magma series and their differentiation products using immobile elements", Chemical Geology 20 (1977) 325-343.
[20] Barrett T. J., MacLean W. H., "Mass changes in hydrothermal alteration zones associated with VMS deposits of the Noranda area", Exploration and Mining Geology 3 (1994) 131-160.
[21] Pearce J., "Sources and settings of granitic rocks", Episodes 19 )1996) 120-125.
[22] Meschede M., "A method of discriminating between different types of mid ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram", Chemical Geology 56 (1986) 207-218.
[23] Pearce J. A., CannJ. R., "Tectonic setting of basic volcanic rocks determined using trace element analyses", Earth and Planetary Science Letters 2 (1973) 290-300.
[24] Taylor C. D., Premo W. R., Meier A. L.,Taggart E. T., "The Metallogeny of Late Triassic Rifting of the Alexander Terrain in Southeastern Alaska and Northwestern British Columbia", Economic Geology 103 (2008) 89-115.
[25] Finamore S. M., Gibson H. L., Thurston P. C., "Archean Synvolcanic Intrusions and Volcanogenic Massive Sulfide at the Genex Mine Kamiskotia Area, Timmins,Ontaria", Economic Geology 103 (2008) 1203-1218.
[26] Wood D. A., "The application of a Th-Hf-Ta diagram to problems of tectono-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province", Earth and Planetary Science Letters 50 (1980) 11–30.
[27] Kolb J., Hellmann A., Rogers A., "The role of transcrustal shear zone in orogenic gold mineralization at the Ajjanahalli mine, Dharwarcraton, south India", Economic Geology 99 (2004) 743-759.
[28] Franklin J. M., Lydon J. W., Sangster D. M., "Volcanic associated massive sulfide deposit", Economic Geology 75 (1981) 485-627.
[29] Nielsen R. L., Forsythe L. M., Gallhan W. E., FiskMR., "The major element controls on the partitioning of HFSE between magnetite and mafic to intermediate composition natural silicate liquids at atmosphere", Chemical Geology 117 (1994) 167-193.
[30] Bao Zh., Zhao Zh., Guha J., Williams-Jones A. E., "HFSE, REE and PGE geochemistry of three sedimentary rock-hosted disseminated gold deposits in southwestern Guizhou Province, China", Geochemical Journal 38 (2004) 368-381.
[31] Lixing L., Houmin L., Denghong W., Changqing Z., "Trace Elements and Rare Earth Elements Geochemistry and its Metallogenic Significance for Cu-Zn Ore Deposits in Tongbai Area, Henan Province, China", Earth Science Frontiers 16 (2009) 325–336.
[32] Byrne R. H., Lee J. H., "Comparative yttrium and rare earth element chemistries in seawater", Marin chemistry 44 (1993) 121-130.
[33] Mackenzie W. S., Donaldson C. H., Guilford C., "Atlas of Igneous Rocks and Their Textures ", (1982) 148.
[34] Oelsner O., " Atlas of the most important ore mineral parageneses under the microscope", (1996) 122.
CAPTCHA Image