زایش رخداد معدنی سرب و روی توزلو (جنوب زنجان): شواهد زمین‌ شناسی، کانه‌ زایی و زمین‌ شیمی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه زمین‌ شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

2 دانشیار، گروه زمین‌ شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

چکیده

کانه‌زایی سرب و روی توزلو در پهنه‌ای به طول حدود 250 تا300 متر و ضخامت حدود 50 متر درون واحدهای آهکی سازند قم رخ‌داده است. سیمای اصلی کانه‌زایی به شکل رگه- رگچه‌ای و پرکننده فضاهای خالی است که کانه‌زایی به‌ صورت رگه‌های باریتی سرب و روی‌دار و یا کانی‌های بروزن‌زاد (سروزیت و اسمیت‌زونیت) مشاهده می‌شود. کانی‌سازی در توزلو به پنج مرحله قابل تفکیک است. مرحله اول کانی‌زایی شامل کربنات‌زدایی سنگ میزبان آهکی است که با افزایش تخلخل و نفوذپذیری سنگ میزبان مشخص می‌شود. کانه‌زایی مرحله دوم شامل دولومیتی‌شدن سنگ میزبان آهکی همراه با اندکی پیریت است. مرحله سوم کانی‌زایی به‌ صورت رگه- رگچه‌های باریتی و کلسیتی (کلسیت نسل دوم) سرب و روی‌دار است. کانی‌سازی مرحله چهارم دربردارنده رگچه‌های تأخیری کلسیتی (کلسیت نسل سوم) بوده و کانی‌زایی مرحله پنجم مربوط به فرایندهای برون‌زاد است. دگرسانی‌های موجود شامل کربنات‌زدایی، کربناتی ± سیلیسی، دولومیتی و کربناتی تأخیری هستند. گالن و پیریت همراه با اندکی اسفالریت، کانی‌های معدنی و کلسیت، باریت و کوارتز کانی‌های باطله است. اسمیت‌زونیت، سروزیت و گوتیت، در اثر فرایندهای برون‌زاد تشکیل شده‌اند. ساخت و بافت کانسنگ شامل انواع رگه- رگچه‌ای، برشی، دانه‌پراکنده، پُرکننده فضای خالی، گل‌کلمی، کاکلی، جانشینی و بازماندی است. الگوی عناصر کمیاب خاکی بهنجارشده به کندریت برای نمونه‌های کانه‌دار و سنگ آهک‌های سالم و دگرسان‌شده مشابه است که می‌تواند بیانگر نقش عمده سنگ‌های میزبان در تمرکز عناصر کانه‌ساز باشد. این الگو برای نمونه‌های کانه‌دار مختلف تقریباً مشابه است که می‌تواند بیانگر تشکیل آنها از یک سامانه کانه‌زایی باشد. ویژگی‌های رخداد معدنی توزلو با کانسارهای اپی‌ترمال نوع سولفیداسیون حدواسط قابل مقایسه است.

کلیدواژه‌ها


Albinson, T., Norman, D.I., Cole, D. and Chomiak, B., 2001. Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data. In: T. Albinson and C.E. Nelson (Editors), New Mines and Discoveries in Mexico and Central America. Society of Economic Geologists, Littleton, pp. 1–32. https://doi.org/10.5382/SP.08.01
Andreeva, E., Matsueda, H., Okrugin, V.M., Takahashi, R. and One, S., 2013. Au-Ag-Te mineralization of the low-sulfidation epithermal Aginskoe deposit, Central Kamchatka, Russia. Resource Geology, 63(4): 337–349. https://doi.org/10.1111/rge.12013
Bagherpour, H., Mokhtari, M.A.A., Kouhestani, H., Nabatian, Gh. and Mehdikhani, B., 2020. Intermediate-sulfidation style of epithermal base metal (Ag) mineralization at the Qoyjeh Yeylaq deposit, SW Zanjan, Iran. Journal of Economic Geology, 11(4): 545–564 (in Persian with extended English abstract).https://doi.org/10.22067/econg.v11i4.71615
Bienvenu, P., Bougault, H., Joron, J.L., Treuil, M. and Dmitriev, L. 1990. MORB alteration: Rare earth element/non-rare hydromagmaphile element fractionation. Chemical Geology, 82: 1–14. https://doi.org/10.1016/0009-2541(90)90070-N
Cooke, D.R. and Simmons, S.F., 2000. Characteristics and genesis of epithermal gold deposits. In: S.G. Hagemann and P.E. Brown (Editors), Gold in 2000. Society of Economic Geologists, Littleton. pp. 221–244. https://doi.org/10.5382/Rev.13.06
Daneshvar, H., 2023. Geology, geochemistry, and genesis of the Tozlou Zn-Pb occurrence, south of Zanjan. Unpublished M.Sc. Thesis, University of Zanjan, Zanjan, Iran, 70 pp. (in Persian with English abstract)
Einaudi, M.T., Hedenquist, J.W. and Inan, E.E., 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In: S.F. Simmons and I. Graham (Editors.), Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth. Society of Economic Geologists, Littleton, pp. 285–313. https://doi.org/10.5382/SP.10.15
Gemmell, J. B., 2004. Low- and intermediate-sulfidation epithermal deposits. In: D.R. Cooke, C.L. Deyel and J. Pongratz (Editors), 24 Ct Gold Workshop. University of Tasmania, Hobart, Australia, pp. 57–63. Retrieved August 16, 2023, from https://catalogobiblioteca.ingemmet.gob.pe/cgi-bin/koha/opac-detail.pl?biblionumber=40250&shelfbrowse_itemnumber=40250
Haghighi Bardineh, S.N., Zarei Sahamieh, R., Zamanian, H. and Ahmadi Khalaji, A., 2017. Geochemical, Sr-Nd isotopic investigations and U-Pb zircon chronology of the Takht granodiorite, west Iran: Evidence for post-collisional magmatism in the northern part of the Urumieh-Dokhtar magmatic assemblage. Journal of African Earth Sciences, 139: 354–366. https://doi.org/10.1016/j.jafrearsci.2017.12.030
Hassani Soughi, F., Calagari, A.A. and Sohrabi, G., 2021. Consideration of mineralization and characterization of fluid inclusions in the Gharehkand sediment-hosted gold-bearing vein-veinlets, southeast of Maragheh, East Azarbaidjan. Journal of Economic Geology, 13(2): 387–409. (in Persian with extended English abstract) https://dx.doi.org/10.22067/econg.v13i2.87317
Hedenquist, J.W., Arribas, A. and Gonzalez-Urien, E., 2000. Exploration for epithermal gold deposits. In: S.G. Hagemann and P.E. Brown (Editors), Gold in 2000. Society of Economic Geologists, Littleton, pp. 245–277. https://doi.org/10.5382/Rev.13.07
Hofstra, A.H. and Cline, J.S., 2000. Characteristics and models for Carlin-type gold deposits. In: S.G. Hagemann and P.E. Brown (Editors), Gold in 2000. Society of Economic Geologists, Littleton. pp. 163–220. https://doi.org/10.5382/Rev.13.05
Humphris, S.E., 1984. The mobility of the rare earth elements in the crust. In: P. Henderson (Editor), Developments in Geochemistry. Elsevier, Amsterdam, pp. 317–342. https://doi.org/10.1016/B978-0-444-42148-7.50014-9
John, D.A., 2001. Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin, western USA: Characteristics, distribution, and relationship to magmatism. Economic Geology 96(8): 1827–1853. https://doi.org/10.2113/gsecongeo.96.8.1827
Johnston, M.K., 2003. Geology of the Cove Mine, Lander County, Nevada, and a genetic model for the McCoy-Cove magmatic-hydrothermal system. Unpublished Ph.D. Thesis, University of Nevada, Reno, Nevada, USA, 353 pp.
Kuehn, C.A. and Rose, A.R., 1992. Geology and geochemistry of wall-rock alteration at the Carlin gold deposit, Nevada. Economic Geology, 87(7): 1697–1721. https://doi.org/10.2113/gsecongeo.87.7.1697
Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1): 25–41. https://doi.org/10.1016/0169-1368(92)90017-F
Majidifard, M.R. and Shafei, A., 2006. Geological map of Marzban, scale 1:100,000. Geological Survey of Iran.
Mansouri, S., Aliani, F., Maanijou, M., Sepahi Gerow, A.A. and Mostaghimi, M., 2015. Mineralogy and geochemistry of granitoids and associated iron skarn of Takht (north of Kaboodar Ahang). Journal of Petrology, 21: 157–176. (in Persian with English abstract) Retrieved April 24, 2023, from https://ijp.ui.ac.ir/article_16197_5c6b8fe4ee86f4b580496929cfce37f9.pdf
McDonough, W.F. and Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
Mohammadi, E., Hasanzadeh-Dastgerdi, M., Ghaedi, M., Dehghan, R., Safari, A., Vaziri-Moghaddam, H., Baizidi, Ch., Vaziri, M.R. and Sfidari, E., 2013. The Tethyan Seaway Iranian Plate Oligo-Miocene deposits (the Qom Formation): distribution of Rupelian (Early Oligocene) and evaporate deposits as evidences for timing and trending of opening and closure of the Tethyan Seaway. Carbonates and Evaporites, 28(3): 321–345. https://doi.org/10.1007/s13146-012-0120-7
Mohammadi Niaei, R., Daliran, F., Nezafati, N., Ghorbani, M., Sheikh Zakariaei, J. and Kouhestani, H., 2015. The Ay Qalasi deposit: An epithermal Pb-Zn (Ag) mineralization in the Urumieh–Dokhtar volcanic belt of northwestern Iran. Neues Jahrbuch für Mineralogie-Abhandlungen (Journal of Mineralogy and Geochemistry), 192(3): 263–74.  https://doi.org/10.1127/njma/2015/0284
Murphy, J.B. and Hynes, A.J., 1986. Contrasting secondary mobility of Ti, P, Zr, Nb and Y in two meta-basaltic suites in the Appalachians. Canadian Journal of Earth Sciences, 23(8): 1138–1144. https://doi.org/10.1139/e86-112
Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer, Berlin, 1250 pp. http://dx.doi.org/10.1007/978-1-4020-8613-7
Rahimsouri, Y., Mehrabi, B. and Alipour, Sh., 2018. Mineralogy, geochemistry and fluid inclusion studies
of Dagh-Daali Zn-Pb (±Au) deposit (northern Takab, northwest Iran). Journal of Petrology, 9(3): 217–244. (in Persian with English abstract) https://doi.org/10.22108/ijp.2019.114335.1110
Rudnick, R.L. and Gao, S., 2003. Composition of the continental crust. In: H.D. Holland and K.K. Turekian (Editors) Treatise on Geochemistry. Elsevier-Pergamon, Oxford, England, pp. 1–64. http://dx.doi.org/10.1016/b0-08-043751-6/03016-4
Salehi, T., Ghaderi, M. and Rashidnejad-Omran, N., 2011. Mineralogy and geochemistry of rare earth elements in Qomish Tappeh Zn–Pb–Cu (Ag) deposit, southwest of Zanjan. Journal of Economic Geology, 2(2): 235–254. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V2I2.7853
Salehi, T., Ghaderi, M. and Rashidnejad-Omran, N., 2015. Epithermal base metal-silver mineralization at Qomish Tappeh deposit, southwest of Zanjan. Scientific Quarterly Journal, Geosciences, 25(97): 329–346. (in Persian with English abstract) https://doi.org/10.22071/GSJ.2015.41519
Saunders, J.A., Hofstra, A.H., Goldfarb, R.J. and Reed, M.H., 2014. Geochemistry of hydrothermal gold deposits. In: H.D. Holland and K.K. Turekian (Editors) Treatise on Geochemistry. Elsevier-Pergamon, Oxford, England, pp. 33–424. http://dx.doi.org/10.1016/B978-0-08-095975-7.01117-7
Shirkhani, M., 2007. Mineralogy, geochemistry and genesis of Ay Qalasi Pb-Zn deposit, SE Takab. Unpublished M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 143 pp. (in Persian with English abstract)
Sillitoe, R.H. and Hedenquist, J.W., 2003. Linkages between volcano-tectonic settings, ore fluid compositions, and epithermal precious-metal deposits. In: S.F. Simmons and I. Graham (Editors), Volcanic, geothermal, and ore-forming fluids: Rulers and witnesses of processes within the Earth. Economic Geology Special Publication 10, Littleton, pp. 315–343. Retrieved April 24, 2023, from https://www.researchgate.net/publication/285488888
Simmons, S.F., White, N.C. and John, D.A., 2005. Geological characteristics of epithermal precious and base metal deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Editors),
One Hundredth Anniversary Volume. Society of Economic Geologists, Littleton, pp. 485–522. https://doi.org/10.5382/AV100.16
Theodore, T.G., Kotlyar, B.B., Berger, V.I., Moring, B.C. and Singer, D.A., 2000. Implications of stream-sediment geochemistry in the northern Carlin trend, Nevada. U.S. Geological Survey, Menlo Park, Report 94025, 45 pp.
Wang, L., Qin, K.Z., Song, G.Y. and Li, G.M., 2019. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews, 107: 434–456. https://doi.org/10.1016/j.oregeorev.2019.02.023
White, N.C. and Hedenquist, J.W., 1990. Epithermal environments and styles of mineralization:
Variations and their causes, and guidelines for exploration. Journal of Geochemical Exploration 36(1–3): 445–474. https://doi.org/10.1016/0375-6742(90)90063-G
Whitford, D.J., Korsch, M.J., Porritt, P.M. and Craven, S.J., 1988. Rare earth element mobility around the volcanogenic polymetallic massive sulfide deposit at Que River, Tasmania, Australia. Chemical Geology, 68(1–2): 105–119. https://doi.org/10.1016/0009-2541(88)90090-3
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
     
CAPTCHA Image